The effects of stochastic monopolar galvanic vestibular stimulation on human postural sway.

J Vestib Res

Center for BioDynamics and Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston, MA 02215, USA.

Published: March 2004

Galvanic vestibular stimulation (GVS) is a technique in which small currents are delivered transcutaneously to the afferent nerve endings of the vestibular system through electrodes placed over the mastoid bones. The applied current alters the firing rates of the peripheral vestibular afferents, causing a shift in a standing subject's vestibular perception and a corresponding postural sway. Previously, we showed that in subjects who are facing forward, stochastic bipolar binaural GVS leads to coherent stochastic mediolateral postural sway. The goal of this pilot study was to extend that work and to test the hypothesis that in subjects who are facing forward, stochastic monopolar binaural GVS leads to coherent stochastic anteroposterior postural sway. Stochastic monopolar binaural GVS was applied to ten healthy young subjects. Twenty-four trials, each containing a different galvanic input stimulus from among eight different frequency ranges, were conducted on each subject. Postural sway was evaluated through analysis of the center-of-pressure (COP) displacements under each subject's feet. Spectral analysis was performed on the galvanic stimuli and the COP displacement time series to calculate the coherence spectra. Significant coherence was found between the galvanic input signal and the anteroposterior COP displacement in some of the trials (i.e., at least one) in nine of the ten subjects. In general, the coherence values were highest for the mid-range frequencies that were tested, and lowest for the low- and high-range frequencies. However, the coherence values we obtained were lower than those we previously reported for stochastic bipolar binaural GVS and mediolateral sway. These differences may be due to fundamental characteristics of the vestibular system such as lower sensitivity to symmetric changes in afferent firing dynamics, and/or differences between the biomechanics of anteroposterior and mediolateral sway.

Download full-text PDF

Source

Publication Analysis

Top Keywords

postural sway
20
binaural gvs
16
stochastic monopolar
12
galvanic vestibular
8
vestibular stimulation
8
vestibular system
8
subjects facing
8
facing forward
8
forward stochastic
8
stochastic bipolar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!