The photocatalytic activity of the carbon-black-modified nano-TiO2) (CB-TiO2) thin films was 1.5 times higher than that of TiO2 thin films in degrading Reactive Brilliant Red X-3B. Photocatalytic oxidation and ozonation of catechol over CB-TiO2 thin films supported on Al sheet was investigated. The experiments showed that ozone concentrations had an important effect on TOC removal. The combined photocatalysis with UV irradiation and ozonation (TiO2/UV/O3) process considerably increased TOC removal rate compared to combined photocatalysis with UV irradiation and oxygen oxidation (TiO2/UV/O2) process, ozonation alone (O3) process, combined ozonation and UV irradiation (UV/O3) process. The complete mineralization of catechol followed pseudo-zero-order kinetics dependent upon ozone (oxygen) concentration and indicated catechol concentration did not affect the kinetics during UV/O3 and TiO2/UV/O3 (O2) processes. The kinetic study showed that the rate constants in the complete mineralization of catechol with TiO2/UV/O3 are 1.32-1.80 times higher than that of UV/O3 with the same concentration of ozone. The rate constants are 2.56-5.36 times higher than the maximal rate constants of TiO2/UV/O2 and 4.68-9.8 times higher than the maximal rate constants of TiO2/UV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0043-1354(03)00269-0DOI Listing

Publication Analysis

Top Keywords

thin films
16
times higher
16
rate constants
16
photocatalytic oxidation
8
oxidation ozonation
8
ozonation catechol
8
carbon-black-modified nano-tio2
8
films supported
8
supported sheet
8
cb-tio2 thin
8

Similar Publications

Large enhancement of ferroelectric properties of perovskite oxides via nitrogen incorporation.

Sci Adv

January 2025

State Key Laboratory of Advanced Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.

Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere.

View Article and Find Full Text PDF

Highly Thermal-Conductive Cubic Boron Arsenide: Single-Crystal Growth, Properties, and Future Thin-Film Epitaxy.

J Phys Chem Lett

January 2025

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.

Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.

View Article and Find Full Text PDF

Spontaneous Bubble Growth Inside High-Saturation-Vapor-Pressure and High-Air-Solubility Liquids and Emulsion Droplets.

Langmuir

January 2025

Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.

Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.

View Article and Find Full Text PDF

Multilayer thin films composed of dielectric BaCaZrTiO (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film.

View Article and Find Full Text PDF

PO Tetrahedron Assisted Chelate Engineering for 10.67%-Efficient Antimony Selenosulfide Solar Cells.

Adv Mater

January 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!