Post-transcriptional regulations of gene expression (control of mRNA stability and translation) play a central role in achieving cellular functions. In a large number of cases, post-transcriptional regulations are dependent on mRNA poly(A) tails, as mRNAs with a long poly(A) tail are generally much more stable and actively translated than deadenylated mRNAs. In this review, we will discuss the activities that modify poly(A) tail lengths in Xenopus oocytes and embryos. We will particularly focus on one activity, the "EDEN" mechanism, that provokes specific poly(A) tail shortening rapidly after fertilization. EDEN-dependent deadenylation is mediated by the specific binding of a protein, EDEN-BP. The EDEN mechanism will be compared with several other mechanisms that provoke deadenylation in a large variety of species. The proposal that the EDEN mechanism is probably a mechanism of widespread importance in the metazoan world will be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0248-4900(03)00038-8 | DOI Listing |
J Pharm Biomed Anal
January 2025
Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States. Electronic address:
The dynamic landscape of mRNA technology highlights the need for innovative quality control (QC) strategies. In this study, we described an efficient one-step digestion approach for concurrent generation of 5'- and 3'-end fragments, enabling simultaneous mRNA capping and poly(A) tail analysis. Tailored 10-23-type DNAzymes, designed from 5'- and 3'-Untranslated Regions (UTRs), selectively cleaved mRNA to release both the 5'-Capped or uncapped short fragments and 3'-Poly(A) tail cleavage products.
View Article and Find Full Text PDFElife
January 2025
Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States.
Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs).
View Article and Find Full Text PDFelements are primate-specific retrotransposon sequences that comprise ∼11% of human genomic DNA. sequences contain an internal RNA polymerase III promoter and the resultant RNA transcripts mobilize by a replicative process termed retrotransposition. retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p).
View Article and Find Full Text PDFMol Biol Rep
January 2025
Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: Recent genomic research has identified several genetic factors contributing to B-cell acute lymphoblastic leukemia (B-ALL). However, the exact cause of the disease is still not fully understood. It is known that mutations in the TAL2 gene play important roles in the development of acute lymphoblastic leukemia.
View Article and Find Full Text PDFFront Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!