Opposing parasympathetic and sympathetic signals determine the autonomic output of the brain to the body and the change in balance over the sleep-wake cycle. The suprachiasmatic nucleus (SCN) organizes the activity/inactivity cycle and the behaviors that go along with it, but it is unclear how the hypothalamus, in particular the SCN, with its high daytime electrical activity, influences this differentiated autonomic balance. In a first series of experiments, we visualized hypothalamic pre-sympathetic neurons by injecting the retrograde tracer Fluoro-Gold into the thoracic sympathetic nuclei of the spinal cord. Pre-parasympathetic neurons were revealed by injection of the retrograde trans-synaptic tracer pseudorabies virus (PRV) into the liver and by sympathetic liver denervation, forcing the virus to infect via the vagus nerve only. This approach revealed separate pre-sympathetic and pre-parasympathetic neurons in the brainstem and hypothalamus. Next, selective retrograde tracing with two unique reporter PRV strains, one injected into the adrenal and the other into the sympathetic denervated liver, demonstrated that there are two separate populations of pre-sympathetic and pre-parasympathetic neurons within the paraventricular nucleus of the hypothalamus. Interestingly, this segregation persists into the SCN, where, as a result, the day-night balance in autonomic function of the organs is affected by specialized pre-sympathetic or pre-parasympathetic SCN neurons. These separate preautonomic SCN neurons provide the anatomical basis for the circadian-driven regulation of the parasympathetic and sympathetic autonomic output.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.10765DOI Listing

Publication Analysis

Top Keywords

pre-parasympathetic neurons
12
pre-sympathetic pre-parasympathetic
12
suprachiasmatic nucleus
8
separate preautonomic
8
parasympathetic sympathetic
8
autonomic output
8
scn neurons
8
neurons
7
sympathetic
6
scn
5

Similar Publications

The hypothalamic paraventricular nucleus (PVN) is a highly complex brain region that is crucial for homeostatic regulation through neuroendocrine signaling, outflow of the autonomic nervous system, and projections to other brain areas. In the past years, single-cell datasets of the hypothalamus have contributed immensely to the current understanding of the diverse hypothalamic cellular composition. While the PVN has been adequately classified functionally, its molecular classification is currently still insufficient.

View Article and Find Full Text PDF

The autonomic innervation in the anterior chamber (AC) structures might play an efferent role in neural intraocular pressure (IOP) regulation, the center of which is thought to be located in the hypothalamus. In this study, we identified the efferent pathway from the hypothalamus to the autonomic innervation in the AC structures. Retrograde trans-multisynaptic pseudorabies virus (PRV) expressing green or red fluorescent protein, PRV531 and PRV724, was injected into the right and left AC of five rats, respectively; PRV531 was injected into the right AC of another five rats, and a non-trans-synaptic tracer, FAST Dil, was injected into the right AC of five rats as a control.

View Article and Find Full Text PDF

Micturition requires precise control of bladder and urethral sphincter via parasympathetic, sympathetic and somatic motoneurons. This involves a spino-bulbospinal control circuit incorporating Barrington's nucleus in the pons (Barr). Ponto-spinal glutamatergic neurons that express corticotrophin-releasing hormone (CRH) form one of the largest Barr cell populations.

View Article and Find Full Text PDF

Barrington's nucleus (BN), commonly known as the pontine micturition center, controls micturition and other visceral functions through projections to the spinal cord. In this study, we developed a rat brain slice preparation to determine the intrinsic and synaptic mechanisms regulating pre-sympathetic output (PSO) and pre-parasympathetic output (PPO) neurons in the BN using patch-clamp recordings. The PSO and PPO neurons were retrogradely labeled by injecting fluorescent tracers into the intermediolateral region of the spinal cord at T13-L1 and S1-S2 levels, respectively.

View Article and Find Full Text PDF

Mammalian clock output mechanisms.

Essays Biochem

June 2011

Division of Gastroenterology and Hepatology, Academic Medical Center (AMC), AZ, Amsterdam, The Netherlands.

In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!