Predicting the long-time, nonequilibrium dynamics of receptor-ligand interactions for structured proteins in a host fluid is a formidable task, but of great importance to predicting and analyzing cell-signaling processes and small molecule drug efficacies. Such processes take place on timescales on the order of milliseconds to seconds, so "brute-force" real-time, molecular or atomic simulations to determine absolute ligand-binding rates to receptor targets and over a statistical ensemble of systems are not currently feasible. In the current study, we implement on real protein systems a previously developed 3-5 hybrid molecular dynamics/Brownian dynamics algorithm, which takes advantage of the underlying, disparate timescales involved and overcomes the limitations of brute-force approaches. The algorithm is based on a multiple timescale analysis of the total system Hamiltonian, including all atomic and molecular structure information for the system: water, ligand, and receptor. In general, the method can account for the complex hydrodynamic, translational-orientational diffusion aspects of ligand-docking dynamics as well as predict the actual or absolute rates of ligand binding. To test some of the underlying features of the method, simulations were conducted here for an artificially constructed spherical protein "made" from the real protein insulin. Excellent comparisons of simulation calculations of the so-called grand particle friction tensor to analytical values were obtained for this system when protein charge effects were neglected. When protein charges were included, we found anomalous results caused by the alteration of the spatial, microscopic structure of water proximal to the protein surface. Protein charge effects were found to be highly significant and consistent with the recent hypothesis of Hoppert and Mayer (Am Sci 1999;87:518-525) for charged macromolecules in water, which involves the formation of a "water dense region" proximal to the charged protein surface followed by a "dilute water region." We further studied the algorithm on a D-peptide/HIV capside protein system and demonstrated the algorithms utility to study the nonequilibrium docking dynamics in this contemporary problem. In general, protein charge effects, which alter water structural properties in an anomalous fashion proximal to the protein surface, were found to be much more important than the so-called hydrodynamic interaction effects between ligand and receptor. The diminished role of hydrodynamic interactions in protein systems allows for a much simpler overall dynamic algorithm for the nonequilibrium protein-docking process. Further studies are now underway to critically examine this simpler overall algorithm in analyzing the nonequilibrium protein-docking problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.10411 | DOI Listing |
Hum Vaccin Immunother
December 2025
Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA.
Safety, immunogenicity, and effectiveness of an mRNA-1273 50-μg booster were evaluated in adolescents (12-17 years), with and without pre-booster SARS-CoV-2 infection. Participants who had received the 2-dose mRNA-1273 100-µg primary series in the TeenCOVE trial (NCT04649151) were offered the mRNA-1273 50-μg booster. Primary objectives included safety and inference of effectiveness by establishing noninferiority of neutralizing antibody (nAb) responses after the booster compared with the nAb post-primary series of mRNA-1273 among young adults in COVE (NCT04470427).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China.
Methyleugenol (ME) has been classified as a "group 2B carcinogen" by IARC. Its positional isomer methylisoeugenol (MIE) has been considered to be of "generally recognized as safe'' status by FDA. ME was more cytotoxic than MIE in cultured mouse primary hepatocytes.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Fox Chase Cancer Center, Philadelphia, PA, United States.
Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
Importance: Using albumin-adjusted calcium is commonly recommended for for measuring calcium, but with little empirical evidence to support the practice.
Objective: To assess the correlation between total calcium measurements (with or without adjustment) vs the ionized calcium level as a reference standard.
Design, Setting, And Participants: This was a population-based cross-sectional study in the province of Alberta, Canada, including adults tested for serum total calcium and ionized calcium simultaneously between January 1, 2013, and October 31, 2019.
JAMA Neurol
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China.
Importance: Autoantibodies targeting astrocytes, such as those against glial fibrillary acidic protein (GFAP) or aquaporin protein 4, are crucial diagnostic markers for autoimmune astrocytopathy among central nervous system (CNS) autoimmune disorders. However, diagnosis remains challenging for patients lacking specific autoantibodies.
Objective: To characterize a syndrome of unknown meningoencephalomyelitis associated with an astrocytic autoantibody.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!