A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hyperaggregating effect of hydroxyethyl starch components and University of Wisconsin solution on human red blood cells: a risk of impaired graft perfusion in organ procurement? | LitMetric

Background: The standard preservation solution used during organ procurement and preservation of most organs is the University of Wisconsin (UW) solution. Despite its superiority over other cold storage solutions, the inclusion of hydroxyethyl starch (HES) as one of the components of the UW solution has been both advocated and denied. This study determined whether HES had any effect on red blood cell (RBC) aggregability and correlated aggregation parameters with HES molecular weight.

Methods: Human RBC aggregability and deformability were investigated in vitro, at 4 degrees C, with a laser-assisted optical rotation cell analyzer. The study of RBC aggregation in a binary HES-HES system gave an indication about the nature of HES-RBCs interactions. Bright field microscopy and atomic force microscopy were used to morphologically characterize the aggregates size and form.

Results: High molecular weight HES and UW solution had a potent hyperaggregating effect; low molecular weight HES had a hypoaggregating effect on RBC. RBC aggregates were of large size and their resistance to dissociation by flow-induced shear stress was high.

Conclusion: The authors' in vitro experiments conclusively showed that the physiologic function of RBCs to form aggregates is significantly affected in the presence of HES. The use of high molecular weight HES in UW solution accounts for extended and accelerated aggregation of erythrocytes that may result in stasis of blood and incomplete washout of donor organs before transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.TP.0000068044.84652.9FDOI Listing

Publication Analysis

Top Keywords

molecular weight
12
hydroxyethyl starch
8
starch components
8
university wisconsin
8
wisconsin solution
8
red blood
8
rbc aggregability
8
high molecular
8
weight solution
8
solution
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!