To examine the functional role of CRH in the regulation of energy homeostasis by leptin, we measured the effects of the CRH antagonist, alpha-helical CRH 8-41 (alphaCRH) on a number of factors affected by leptin activity. These included food intake, body weight, hypothalamic c-fos-like immunoreactivity (c-FLI), weight and histological characterization of white adipose tissue, and mRNA expressions of uncoupling protein (UCP) in brown adipose tissue (BAT) in C57Bl/6 mice. Central infusion of leptin into the lateral cerebroventricle (icv) caused significant induction of c-FLI in the paraventricular nucleus (PVN), ventromedial hypothalamic nucleus (VMH), dorsomedial hypothalamic nucleus, and arcuate nucleus. In all these nuclei, the effect of leptin on expression of cFLI in the PVN and VMH was decreased by treatment with alphaCRH. Administration of leptin markedly decreased cumulative food intake and body weight with this effect being attenuated by pretreatment with alphaCRH. In peripheral tissue, leptin up-regulated BAT UCP1 mRNA expression and reduced fat depositions in this tissue. Those changes in BAT were also decreased by treatment with alphaCRH. As a consequence of the effects on food intake or energy expenditure, treatment with alphaCRH attenuated the leptin-induced reduction of body adiposity, fat cell size, triglyceride contents, and ob mRNA expression in white adipose tissue. Taken together, these results indicate that CRH neurons in the PVN and VMH may be an important mediator for leptin that contribute to regulation of feeding, adiposity, and UCP expression.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2003-0301DOI Listing

Publication Analysis

Top Keywords

food intake
12
adipose tissue
12
treatment alphacrh
12
leptin
8
feeding adiposity
8
uncoupling protein
8
intake body
8
body weight
8
white adipose
8
hypothalamic nucleus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!