Orientation modulation of a synthetic polypeptide in self-assembled monolayers: a TOF-SIMS study.

J Am Chem Soc

Laboratory of Physical Chemistry of Polymers and Membranes (LCPPM), Institute of Biomolecular Sciences (ISB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Published: July 2003

Structure and orientation of molecules are key properties of functionalized surfaces. Using time-of-flight secondary ion mass spectrometry (TOF-SIMS), here we investigate how to modulate these parameters upon the immobilization process varying the conditions of self-assembly. The molecule of interest, a template-assembled synthetic protein (TASP), consists of a central peptide ring with orthogonally arranged residues. Thioalkane chains allow the directed self-assembly of the molecule on a gold surface; four serine residues on the opposite side of the ring can be used as anchoring sites for various functional sensing molecules. The TASP conformation and its orientation in self-assembled monolayers (SAMs) play a central role for the accessibility of these serine residues. To study the influence of the self-assembly conditions, two series of samples were prepared. Pure TASP monolayers of different surface densities are compared to mixed TASP/alkanethiol monolayers prepared by sequential adsorption varying sequence and particular incubation times as well as by coadsorption modifying incubation times and TASP/alkanethiol mass ratios. Switching the TASP orientation from a state where the molecules are lying flat on the surface to an upright orientation turned out to be possible by inserting the TASP into a preformed alkanethiol monolayer of an appropriate surface density. This study demonstrates that TOF-SIMS is an excellent tool not only to investigate the surface composition, but also the molecular structure of functionalized surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0210749DOI Listing

Publication Analysis

Top Keywords

self-assembled monolayers
8
functionalized surfaces
8
self-assembly molecule
8
serine residues
8
incubation times
8
orientation
5
tasp
5
surface
5
orientation modulation
4
modulation synthetic
4

Similar Publications

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance.

View Article and Find Full Text PDF

Chitosan is a versatile bioactive polysaccharide in various industries, such as pharmaceuticals and environmental applications, owing to its abundance, biodegradability, biocompatibility, and antibacterial properties. To effectively harness its potential for various purposes, it is crucial to understand the mechanisms of its interaction in water. This study investigates the interactions between high molecular weight (HMW, >150 kDa) chitosan and four different functionalized self-assembled monolayers (SAMs) at three different pHs (3.

View Article and Find Full Text PDF

Enhancing efficiency and stability in perovskite solar cells: innovations in self-assembled monolayers.

Front Chem

January 2025

Key laboratory of Rubber-Plastic of Ministry of Education /Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.

Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination.

View Article and Find Full Text PDF

A multiscale approach is employed to investigate the interaction dynamics between interleukin-6, a key cancer biomarker, and alkyl-functionalized surfaces, with the ultimate goal of guiding biosensor design. The study integrates classical molecular dynamics, Brownian dynamics simulations, and binding experiments to explore the adsorption dynamics and energetics of IL-6 on surfaces modified with self-assembled monolayers (SAMs). The comparative analysis reveals a dramatic effect on the interaction strength of IL-6 with a SAMs comprising a mix of charged and hydrophobic ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!