With the use of a seed washing technique, more than 4000 Gram negative bacteria were isolated by two improved isolation methods from 446 batches of 1 kg rice seed samples obtained from 22 provinces in the Philippines. They were initially characterized on the basis of colony morphology and results of biochemical and pathogenicity tests. Six hundred and fifty-two strains were further identified by Biolog, from which 133 were selected for fatty acid methylester (FAME) analysis together with 80 standard reference strains. Sixteen species or types of Pseudomonas and 17 genera of non-pseudomonads were identified, more than one third of which have not been recorded in rice. The most predominant species observed were P.putida and P. fulva. About 17% of the strains of Pseudomonas and 2% of the non pseudomonads were antagonistic to one or more fungal or bacterial pathogens of rice. Rice seed is an important source of biological control agents.

Download full-text PDF

Source
http://dx.doi.org/10.1631/jzus.2003.0463DOI Listing

Publication Analysis

Top Keywords

rice seed
12
gram negative
8
negative bacteria
8
pathogens rice
8
rice rice
8
rice
6
diversity gram
4
bacteria antagonistic
4
antagonistic major
4
major pathogens
4

Similar Publications

ALBA3 maintains male fertility under heat stress in plants.

J Integr Plant Biol

January 2025

School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

Metabolites, Biotransformation, and Plant-Growth Dual Regulatory Activity from Uncovered by the Fermentation Interaction with a Host.

J Agric Food Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.

One new azaphilone derivative () from in ordinary medium, one new phthalide derivative (), a microbial transformation product of ingredients by , a pair of new austdiol enantiomers (+)- and (-)-, one new epsilon-caprolactone derivative (), and one new ophiobolin-type sesterterpenoid () from the in host medium were reported. The structures were determined by spectroscopic analysis and single-crystal X-ray diffraction. Compounds - could completely inhibit the germination of rice seeds at 50 μg/mL, which is higher than that of the positive control.

View Article and Find Full Text PDF

OsFKBP12 transduces the sucrose signal from OsNIN8 to the OsTOR pathway in a loosely binding manner for cell division.

iScience

January 2025

Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Previously, OsNIN8 initiated a sucrose signal for cell division in radicle and seed development in rice. Here, a set of genes was induced in starved sprouts after sucrose treatment, and 14 genes were screened between ZH11 and as reporters of sucrose signal. Expressions of reporter depended on levels of in overexpression and RNAi lines.

View Article and Find Full Text PDF

The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!