The amount of sample that is available for analysis in laboratory plant cultivation experiments is usually very limited. Highly sensitive analytical techniques are therefore required, even for elements that are present in the plants at mg g(-1) concentrations, and graphite furnace atomic absorption spectrometry (GFAAS) was chosen in this work because of its micro-sampling capability, and its relatively simple operation. Four micro-methods were investigated for the determination of iron in roots and leaves of rice plants: i) a micro-digestion with nitric and hydrochloric acids, ii) a slurry procedure using tetramethylammonium hydroxide (TMAH) tissue solubilizer, iii) a slurry prepared in 1.4 mol L(-1) nitric acid, and treated in an ultrasonic bath, and iv) the direct analysis of solid samples. The micro-digestion was suffering from high blank values and contamination problems, so that it could not be recommended for routine purposes. The TMAH method exhibited poor precision and occasional low recoveries, particularly for real samples. Direct solid sampling analysis gave results similar to those obtained with the slurry technique with ultrasonic agitation for the determination of iron in certified reference materials with iron content up to about 100 microg g(-1), but was too sensitive for the investigated rice plants, which had an iron content up to several mg g(-1). The slurry technique with ultrasonic treatment of the samples, suspended in dilute nitric acid, was finally adopted as the method of choice. The method was then applied for the determination of iron in the leaves and in different compartments of the roots of two rice cultivars, one sensitive to iron toxicity, an important nutritional disorder, and the other one resistant to iron toxicity. The results suggest that the higher resistance to iron toxicity of the second cultivar is due to a smaller uptake of iron from the soil, resulting in lower iron levels in all compartments of the plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-003-2072-1 | DOI Listing |
Int J Cardiol Heart Vasc
February 2025
Department of Geriatrics, Peking University Third Hospital, Beijing 100191, PR China.
Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.
View Article and Find Full Text PDFFront Nutr
December 2024
United States Agency for International Development, Kathmandu, Nepal.
Introduction: Monitoring and evaluation of maternal and child nutrition programs typically concentrates on overall population-level results. There is limited understanding, however, of how intervention reach and expected outcomes differ among sub-populations, necessary insight for addressing inequalities. These analyses aim to determine if maternal exposure to social and behavior change (SBC) interventions is associated with scales of maternal practices (antenatal care, iron and folic acid in pregnancy, diet in pregnancy, postnatal care, iron and folic acid postpartum, and maternal dietary diversity) and child practices (institutional birth, health mothers' group participation, growth monitoring and promotion, early initiation of breastfeeding and infant and young child feeding) in Nepal, overall and by wealth, caste, and geography.
View Article and Find Full Text PDFRSC Adv
January 2025
Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China.
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.
View Article and Find Full Text PDFPeerJ
January 2025
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China.
With the expansion of the mining industry, environmental pollution from microelements (MP) and red mud (RM) has become a pressing issue. While bioremediation offers a cost-effective and sustainable solution, plant growth in these polluted environments remains difficult. is one of the few plants capable of surviving in RM-affected soils.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.
Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!