Amphotericin B is the most effective drug for treating many life-threatening fungal infections. Amphotericin B administration is limited by infusion-related toxicity, including fever and chills, an effect postulated to result from proinflammatory cytokine production by innate immune cells. Because amphotericin B is a microbial product, we hypothesized that it stimulates immune cells via Toll-like receptors (TLRs) and CD14. We show here that amphotericin B induces signal transduction and inflammatory cytokine release from cells expressing TLR2 and CD14. Primary murine macrophages and human cell lines expressing TLR2, CD14, and the adapter protein MyD88 responded to amphotericin B with NF-kappaB-dependent reporter activity and cytokine release, whereas cells deficient in any of these failed to respond. Cells mutated in TLR4 were less responsive to amphotericin B stimulation than cells expressing normal TLR4. These data demonstrate that TLR2 and CD14 are required for amphotericin B-dependent inflammatory stimulation of innate immune cells and that TLR4 may also provide stimulation of these cells. Our results provide a putative molecular basis for inflammatory responses elicited by amphotericin B and suggest strategies to eliminate the acute toxicity of this drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M306137200 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Ophthalmology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
The eye is considered to be an immune-privileged region. However, several parts of the eye have distinct mechanisms for delivering immune cells to the injury sites or even in response to aging. Although these immune responses are intended to be protective, the visual acuity can be compromised by the release of pro-inflammatory cytokines by immune cells, which induce chronic inflammation and fibrosis.
View Article and Find Full Text PDFJ Transl Med
January 2025
Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy.
In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India. Electronic address:
Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression.
View Article and Find Full Text PDFRheumatol Int
January 2025
Division of Hematology-Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of various hematological malignancies. Recently, CAR-T has been used in refractory auto-immune diseases with initial encouraging results. In this systematic review, we examined the safety and efficacy of CAR-T in patients with refractory auto-immune diseases.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou, China.
Background: Anti-CD19 chimeric antigen receptor (CAR) T cell therapy is a common, yet highly efficient, cellular immunotherapy for lymphoma. However, many recent studies have reported on its cardiovascular (CV) toxicity. This study analyzes the cardiotoxicity of CD19 CAR T cell therapy in the treatment of lymphoma for providing a more valuable reference for clinicians.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!