The alpha9 subunit is a component of the neuronal nicotinic acetylcholine receptor gene superfamily that is expressed in very restricted locations. The promoter of the human gene has been analyzed in the human neuroblastoma SH-SY5Y, where alpha9 subunit expression was detected, and in C2C12 cells that do not express alpha9. A proximal promoter region (from -322 to +113) showed maximal transcriptional activity in SH-SY5Y cells, whereas its activity in C1C12 cells was much lower. Two elements unusually located at the 5'-noncoding region exhibited opposite roles. A negative element located between +15 and +48 appears to be cell-specific because it was effective in C2C12 but not in SH-SY5Y cells, where it was counterbalanced by the presence of the promoter region 5' to the initiation site. An activating element located between +66 and +79 and formed by two adjacent Sox boxes increased the activity of the alpha9 promoter about 4-fold and was even able to activate other promoters. This element interacts with Sox proteins, probably through a cooperative mechanism in which the two Sox boxes are necessary. We propose that the Sox complex provides an initial scaffold that facilitates the recruiting of the transcriptional machinery responsible for alpha9 subunit expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M307043200 | DOI Listing |
J Biol Chem
January 2025
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form as homopentamers.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2024
School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States.
Nicotinic acetylcholine receptors containing the α9 subunit have been mechanistically implicated in alleviating chemotherapy-induced neuropathic pain. However, the cell types that underlie these effects are currently unknown. RgIA-5474 is a recently developed, synthetic α-conotoxin analog that is a potent antagonist of human α9α10 nAChRs.
View Article and Find Full Text PDFMolecules
November 2024
Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
6-hydroxy-L-nicotine (6HLN) is a nicotine (NIC) derivative with proven therapeutic potential in neurodegenerative disorders. Here, the impact of 6HLN on cell growth, migratory behavior, and inflammatory status of three different cancer cell lines (A549, MCF7, and U87) and two normal cell lines (16HBE14o and MCF10A) was investigated. In silico analyses were conducted to evaluate the binding affinity of 6HLN to nicotinic receptors (nAChRs) containing α9 and α5 subunits.
View Article and Find Full Text PDFACS Chem Biol
November 2024
Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612, United States.
Chronic neuropathic pain is an increasingly prevalent societal issue that responds poorly to existing therapeutic strategies. The α9α10 nicotinic acetylcholine receptor (nAChR) has emerged as a potential target to treat neuropathic pain. However, challenges in expressing functional α9α10 nAChRs in mammalian cell lines have slowed the discovery of α9α10 ligands and studies into the relationship between α9α10 nAChRs and neuropathic pain.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA.
Noise-induced hearing loss (NIHL) poses an emerging global health problem with only ear protection or sound avoidance as preventive strategies. In addition, however, the cochlea receives some protection from medial olivocochlear (MOC) efferent neurons, providing a potential target for therapeutic enhancement. Cholinergic efferents release ACh (Acetylycholine) to hyperpolarize and shunt the outer hair cells (OHCs), reducing sound-evoked activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!