Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Angiogenesis induced by growth factors may represent a rational therapy for patients with stroke. Vascular endothelial growth factor (VEGF) plays a pivotal role in angiogenesis and VEGF expression is enhanced in the post-ischemic brain. VEGF induced by brain hypoxia can lead to the growth of new vessels and may represent a natural protective mechanism improving survival after stroke. In the light of these findings we investigated changes of VEGF expression in different brain regions after intracerebroventricular injection of adeno-associated virus transferring gene for VEGF (rAAV-VEGF) in the gerbil, and after transient brain ischemic injury, we studied the effects of rAAV-VEGF injection on survival, brain edema, delayed neuronal death in the CA1 area and learning ability. Treatment with rAAV-VEGF 6 days or 12 days before ischemia significantly improves survival, brain edema and CA1 delayed neuronal death and post-ischemic learning evaluated by passive avoidance test. Animals treated with rAAV-VEGF showed in the thalamus and the cortex, a significant positive immunostaining for VEGF similar to those subjected to brain ischemia and not treated with rAAV-VEGF. These data represent a further contribution to a possible employment of gene therapy by using rAAV-VEGF in brain ischemia and indicate that thalamus and cortex may be targets for neuroprotective effects of VEGF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1043-6618(03)00128-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!