Preferential closed channel blockade of HERG potassium currents by chemically synthesised BeKm-1 scorpion toxin.

FEBS Lett

Department of Physiology and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, University Walk, BS8 1TD, Bristol, UK.

Published: July 2003

The scorpion toxin peptide BeKm-1 was synthesised by fluorenylmethoxycarbonyl solid phase chemistry and folded by air oxidation. The peptide's effects on heterologous human ether-a-go-go-related gene potassium current (I(HERG)) in HEK293 cells were assessed using 'whole-cell' patch clamp. Blockade of I(HERG) by BeKm-1 was concentration-dependent, temperature-dependent, and rapid in onset and reversibility. Blockade also exhibited inverse voltage dependence, inverse dependence on duration of depolarisation, and reverse use- and frequency-dependence. Blockade by BeKm-1 and recombinant ergtoxin, another scorpion toxin known to block HERG, differed in their recovery from HERG current inactivation elicited by strong depolarisation and in their ability to block HERG when the channels were already activated. We conclude that synthetic BeKm-1 toxin blocks HERG preferentially through a closed (resting) state channel blockade mechanism, although some open channel blockade also occurs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(03)00662-8DOI Listing

Publication Analysis

Top Keywords

channel blockade
12
scorpion toxin
12
block herg
8
blockade
6
herg
5
bekm-1
5
preferential closed
4
closed channel
4
blockade herg
4
herg potassium
4

Similar Publications

The complex relationship between inflammation, its effects on neuronal excitability and the ensuing plasticity of dorsal root ganglion (DRG) sensory neurons remains to be fully explored. In this study, we have employed a system of experiments assessing the impact of inflammatory conditioned media derived from activated immune cells on the excitability and activity of DRG neurons and how this relates to subsequent growth responses of these cells. We show here that an early phase of increased neuronal activity in response to inflammatory conditioned media is critical for the engagement of plastic processes and that neuronal excitability profiles are linked through time to the structural phenotype of individual neurons.

View Article and Find Full Text PDF

Background: Acid-sensing ion channels are activated during myocardial ischemia and are implicated in the mechanism of myocardial ischemia-reperfusion injury (MIRI). Acid-sensing ion channel 3 (ASIC3), the most pH-sensitive member of the ASIC family, is highly expressed in myocardial tissues. However, the role of ASIC3 in MIRI and its precise effects on the myocardial metabolome remain unclear.

View Article and Find Full Text PDF

Neurons migrate in a saltatory manner by repeating two distinct steps: extension of the leading process and translocation of the cell body. The former step is critical for determining the migratory route in response to extracellular guidance cues. In the latter step, neurons must generate robust forces that translocate the bulky soma against mechanical barriers of the surrounding three-dimensional environment.

View Article and Find Full Text PDF

Toluene is a cerebral artery constrictor acting via BK channels.

Neuropharmacology

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA. Electronic address:

Acute intoxication by toluene usually follows intentional inhalation to achieve a "high", which may lead to repeated use due to toluene's reinforcing properties. In both acute and chronic intoxication brain function is primarily affected. Neuronal and glial elements participate in toluene's reinforcing properties and chronic toxicity, yet the targets underlying acute toxicity remain unknown.

View Article and Find Full Text PDF

Muscarinic acetylcholine type 1 receptor antagonism activates TRPM3 to augment mitochondrial function and drive axonal repair in adult sensory neurons.

Mol Metab

December 2024

Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada. Electronic address:

Objective: Antagonism of the muscarinic acetylcholine type 1 receptor (MR) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in MR antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity.

Methods: Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and MR antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!