Lack of interaction of digoxin and P-glycoprotein inhibitors, quinidine and verapamil in human placenta in vitro.

Eur J Obstet Gynecol Reprod Biol

Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 151, Beer-Sheva 84101, Israel.

Published: August 2003

Objective: To determine the effect of quinidine and verapamil, known antiarrhythmic agents and P-glycoprotein (Pgp) inhibitors, on digoxin transport from the maternal to the fetal compartment in the isolated perfused human placenta.

Study Design: Isolated placental cotyledons from normal human placentae (n=20) were dually perfused with M199 medium enriched with albumin (0.3%) and glucose (0.1%). The maternal and the fetal circulation flow rates were 12 and 6 ml/min, respectively. Closed circulations were used to evaluate steady state transplacental gradient formation. In six placentae quinindine was added to the maternal circuit; after 45 min of perfusion, digoxin was added to the maternal circulation. The effect of verapamil on digoxin transfer from the maternal to the fetal compartments was explored in five placentae. In six additional placentae the transfer of digoxin was studied in the absence of quinidine. Transplacental passage of digoxin was calculated from repeated fetal and maternal perfusate samples. Digoxin levels were determined in perfusate samples by fluorescence polarization immunoassay. Antipyrine was added to the maternal reservoir of all placentae as reference substance.

Results: The transfer of digoxin (alone) and in the presence of quinidine or verapamil was 10.93+/-3.71, 9.00+/-5.2 and 12.94+/-4.86%, respectively. The levels of digoxin in the fetal compartment, 0.62+/-0.20, 0.48+/-0.29 and 0.60+/-0.26 ng/ml, respectively, were not significantly affected by quinidine and verapamil. These Pgp modulators, also did not influence significantly the steady state levels of digoxin in the maternal compartment.

Conclusion: Neither quinidine nor verapamil affected the transplacental transfer of digoxin in vitro in normal human placentae. In contrast to the other tissues, they do not inhibit Pgp activity in term human placentae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-2115(02)00513-4DOI Listing

Publication Analysis

Top Keywords

quinidine verapamil
20
maternal fetal
12
human placentae
12
transfer digoxin
12
digoxin
11
maternal
8
fetal compartment
8
normal human
8
steady state
8
digoxin maternal
8

Similar Publications

The objective of this study is to assess the response of telemetered common marmosets to multiple cardiac ion channel inhibitors and to clarify the usefulness of this animal model in evaluating the effects of drug candidates on electrocardiogram (ECG). Six multiple cardiac ion channel inhibitors (sotalol, astemizole, flecainide, quinidine, verapamil and terfenadine) were orally administered to telemetered common marmosets and changes in QTc, PR interval and QRS duration were evaluated. Drugs plasma levels were determined to compare the sensitivity in common marmosets to that in humans.

View Article and Find Full Text PDF

Specificity of the ergothioneine transporter natively expressed in HeLa cells.

Biochem Biophys Res Commun

May 2019

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore. Electronic address:

Ergothioneine is a biologically important compound that has been shown to be transported by the organic cation transporter novel type 1 (OCTN1). Following this discovery, a variety of alternate functions for OCTN1 have been suggested including an integral function in the extra-neuronal cholinergic system. The present study reaffirms the primacy of ergothioneine over these alternate substrates using natively expressed OCTN1 in HeLa cells.

View Article and Find Full Text PDF

To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics.

View Article and Find Full Text PDF

Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine.

Mol Pharm

July 2016

Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.

The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al.

View Article and Find Full Text PDF

Proton-Coupled Organic Cation Antiporter Contributes to the Hepatic Uptake of Matrine.

J Pharm Sci

March 2016

Department of Pharmaceutics of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Matrine is the major bioactive alkaloid found in certain Sophora plants and has been used for the treatment of liver diseases and protection of liver function. The aim of this study was to investigate the human liver uptake mechanism of matrine by using HepG2 cells as the in vitro model. Matrine was transported into HepG2 cells in a time- and temperature-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!