Effects of an endogenous nitric oxide synthase inhibitor on phorbol myristate acetate-induced acute lung injury in rats.

Clin Exp Pharmacol Physiol

Department of Internal Medicine, Catholic Cardinal Tien Hospital, Fu-Jen Catholic University, Taipei Hsien, Taiwan, Republic of China.

Published: February 2004

1. In the present study, we determined whether the endogenous nitric oxide (NO) synthase (NOS) inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME) could ameliorate the acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in rat isolated lung. 2. Typical ALI was induced successfully by PMA during 60 min of observation. At 2 micro g/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/bodyweight ratio, pulmonary arterial pressure (PAP) and protein concentration of bronchoalveolar lavage fluid. 3. Pretreatment with the NOS inhibitor l-NAME (5 mmol/L) significantly attenuated ALI. None of the parameters reflective of lung injury showed significant increase, except for PAP (P < 0.001). The addition of l-arginine (4 mmol/L) blocked the protective effective of l-NAME. Pretreatment with l-arginine exacerbated PMA-induced lung injury. 4. These data suggest that l-NAME significantly ameliorates ALI induced by PMA in rats, indicating that endogenous NO plays a key role in the development of lung oedema in PMA-induced lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-1681.2003.03848.xDOI Listing

Publication Analysis

Top Keywords

lung injury
20
ali induced
12
lung
9
endogenous nitric
8
nitric oxide
8
oxide synthase
8
synthase inhibitor
8
phorbol myristate
8
acute lung
8
induced pma
8

Similar Publications

Objectives: The pairing of immunotherapy and radiotherapy in the treatment of locally advanced nonsmall cell lung cancer (NSCLC) has shown promise. By combining radiotherapy with immunotherapy, the synergistic effects of these modalities not only bolster antitumor efficacy but also exacerbate lung injury. Consequently, developing a model capable of accurately predicting radiotherapy- and immunotherapy-related pneumonitis in lung cancer patients is a pressing need.

View Article and Find Full Text PDF

Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with or intratracheal inoculation with LPS.

Front Immunol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).

Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.

Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Background: Short-chain fatty acids (SCFAs), derived from the fermentation of dietary fiber by intestinal commensal bacteria, have demonstrated protective effects against acute lung injury (ALI) in animal models. However, the findings have shown variability across different studies. It is necessary to conduct a comprehensive evaluation of the efficacy of these treatments and their consistency.

View Article and Find Full Text PDF

Introduction: In patients with acute respiratory distress syndrome, mechanical ventilation often leads to ventilation-induced lung injury (VILI), which is attributed to unphysiological lung strain (UPLS) in respiratory dynamics. Platelet endothelial cell adhesion molecule-1 (PECAM-1), a transmembrane receptor, senses mechanical signals. The Src/STAT3 pathway plays a crucial role in the mechanotransduction network, concurrently triggering pyroptosis related inflammatory responses.

View Article and Find Full Text PDF

Background: This study aimed to quantify the global impact of pneumoconiosis resulting from occupational exposure to particulate matter, gasses, and fumes from 1990 to 2021, utilizing data from the Global Burden of Disease Study 2021.

Method: The analysis evaluated the global, regional, and national burden of pneumoconiosis attributable to workplace exposure to particulate matter, gasses, and fumes. It explored variations in disease impact across different demographics, including age and gender, and analyzed the relationship between disease burden and the Socio-Demographic Index (SDI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!