Light does not degrade the constitutively expressed BMAL1 protein in the mouse suprachiasmatic nucleus.

Eur J Neurosci

Department of Neurobiology, Aaron Lazare Medical Research Building, Room 723, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA.

Published: July 2003

Biological rhythms in mammals are driven by a central circadian clock located in the suprachiasmatic nucleus (SCN). At the molecular level the biological clock is based on the rhythmic expression of clock genes. Two basic helix-loop-helix (bHLH)/PAS-containing transcription factors, CLOCK and BMAL1 (MOP3), provide the basic drive to the system by activating transcription of negative regulators through E box enhancer elements. A critical feature of circadian timing is the ability of the clockwork to be entrained to the environmental light/dark cycle. The light-resetting mechanism of the mammalian circadian clock is poorly understood. Light-induced phase shifts are correlated with the induction of the clock genes mPer1 and mPer2 and a subsequent increase in mPER1 protein levels. It has previously been suggested that rapid degradation of BMAL1 protein in the rat SCN is part of the resetting mechanism of the central pacemaker. Our study shows that BMAL1 and CLOCK proteins are continuously expressed at high levels in the mouse SCN, supporting the hypothesis that rhythmic negative feedback plays the major role in rhythm generation in the mammalian pacemaker. Using both immunocytochemistry and immunoblot analysis, our studies demonstrate that BMAL1 protein in the mouse SCN is not affected by a phase-resetting light pulse. These results indicate that rapid degradation of BMAL1 protein is not a consistent feature of resetting mechanisms in rodents.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2003.02735.xDOI Listing

Publication Analysis

Top Keywords

bmal1 protein
16
protein mouse
8
suprachiasmatic nucleus
8
circadian clock
8
clock genes
8
rapid degradation
8
degradation bmal1
8
mouse scn
8
clock
7
bmal1
6

Similar Publications

Mitochondria are key regulators of metabolism and ATP supply in skeletal muscle, while circadian rhythms influence many physiological processes. However, whether mitochondrial function is intrinsically regulated in a circadian manner in mouse skeletal muscle is inadequately understood. Accordingly, we measured post-absorptive transcript abundance of markers of mitochondrial biogenesis, dynamics, and metabolism (extensor digitorum longus [EDL], soleus, gastrocnemius), protein abundance of electron transport chain complexes (EDL and soleus), enzymatic activity of SDH (tibialis anterior and plantaris), and maximum uncoupled respiration (tibialis anterior) in different skeletal muscles from female C57BL/6NJ mice at four zeitgeber times (ZT), ZT 1, 7, 13, and 19.

View Article and Find Full Text PDF

Circadian Rhythm, Hypoxia, and Cellular Senescence: From Molecular Mechanisms to Targeted Strategies.

Eur J Pharmacol

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence.

View Article and Find Full Text PDF

Acute kidney injury (AKI) and chronic kidney disease (CKD) represent two frequently observed clinical conditions. AKI is characterized by an abrupt decrease in glomerular filtration rate (GFR), generally associated with elevated serum creatinine (sCr), blood urea nitrogen (BUN), and electrolyte imbalances. This condition usually persists for approximately a week, causing a transient reduction in kidney function.

View Article and Find Full Text PDF

Purpose: To investigate BMAL1 and BMP6 expressive differences in ovarian granulosa cells (OGCs) of patients with polycystic ovary syndrome (PCOS), explore regulatory relationship, assess their impacts on OGC proliferation and apoptosis, and analyze their correlations with ART outcomes of patients.

Methods: A clinical study selected 40 PCOS patients who underwent IVF/ICSI in our hospital from January to October 2022 and 39 controls with male or tubal factor infertility. RT-qPCR and Western blot assessed BMAL1 and BMP6 mRNA/protein levels.

View Article and Find Full Text PDF

Joint pain is the primary symptom of osteoarthritis (OA) and the main motivator for patients to seek medical care. OA-related pain significantly restricts joint function and diminishes quality of life. Despite the availability of various pain-relieving medications for OA, current treatment strategies often fall short in delivering adequate pain relief.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!