Drug development against viral or microbial targets is often compounded by the existence of naturally occurring polymorphisms or drug resistant mutations. In the case of Plasmodium falciparum, the etiological agent of malaria, four related and essential proteases, plasmepsin I, II, and IV and the histo-aspartyl protease (HAP), have been identified in the food vacuole of the parasite. Since all of these enzymes are involved in the hemoglobin degradation of infected victims, the simultaneous inhibition of the four enzymes can be expected to lead to a faster starvation of the parasite and to delay the onset of drug resistance, since four enzymes will need to mutate in a concerted fashion. This study describes the design of an adaptive inhibitor intended to inhibit the entire plasmepsin family. Adaptive inhibitors bind with extremely high affinity to a primary target within the family and maintain significant affinity against the remaining members. This objective is accomplished by engineering the strongest and most specific interactions of the inhibitor against conserved regions of the binding site and by accommodating target variations by means of flexible asymmetric functional groups. Using this approach, we have designed an inhibitor with subnanomolar affinity (0.5 nM) against the primary target, plasmepsin II, and with no loss or a very small loss of affinity against plasmepsin IV, I, and HAP (K(i) ratios of 0.4, 7.1, and 17.7, respectively). The core of the inhibitor is defined by an allophenylnorstatine scaffold. Adaptability is provided by an asymmetric amino indanol functional group facing one of the key variable regions in the binding site. Adaptive inhibitors, which display high affinity against several variations of a primary target, are expected to play an important role in the chemotherapy of infectious diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi034131z | DOI Listing |
Syst Rev
January 2025
Bill and Joyce Cummings Institute of Global Health, University of Global Health Equity (UGHE), Butaro, Rwanda.
Background: Despite a global drop of under-five mortality by 59% between 1990 and 2019, it remains high in Low- and Middle- income Countries (LMICs)with a preponderance in Sub-Saharan Africa (SSA), Southern and Central Asia. Besides preterm and intrapartum complications, undernutrition contributes 45% of the deaths in these developing regions. In Africa, under-five mortality due to severe acute malnutrition (SAM) has stagnated at 10-40%, higher than WHO targets and the SDGs projections.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland.
Background: Obesity is associated with varying degrees of metabolic dysfunction. In this study, we aimed to discover markers of the severity of metabolic impairment in men with obesity via a multiomics approach.
Methods: Thirty-two morbidly men with obesity who were candidates for Roux-en-Y gastric bypass (RYGB) surgery were prospectively followed.
Nat Commun
January 2025
Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia.
Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
Mechanisms related to tumor evasion from NK cell-mediated immune surveillance remain enigmatic. Dickkopf-1 (DKK1) is a Wnt/β-catenin inhibitor, whose levels correlate with breast cancer progression. We find DKK1 to be expressed by tumor cells and cancer-associated fibroblasts (CAFs) in patient samples and orthotopic breast tumors, and in bone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!