The intranuclear distribution of the transcription factor Oct-4, which is specifically expressed in totipotent mice stem and germ line cells, was studied in mouse oocytes using immunogold labeling/electron microscopy and immunofluorescence/confocal laser scanning microcopy. The localization of Oct-4 was studied in transcriptionally active (uni/bilaminar follicles) and inactive (antral follicles) oocytes. Additionally, the Oct-4 distribution was examined relative to that of the unphosphorylated form of RNA polymerase II (Pol II) and splicing factor (SC 35) in the intranuclear entities such as perichromatin fibrils (PFs), perichromatin granules (PGs), interchromatin granule clusters (IGCs), Cajal bodies (CBs), and nucleolus-like bodies (NLBs). It was shown that: (i) Oct-4 is localized in PFs, IGCs, and in the dense fibrillar component (DFC) of the nucleolus at the transcriptionally active stage of the oocyte nucleus; (ii) Oct-4 present in PFs and IGCs colocalizes with Pol II and SC 35 at the transcriptionally active stage; (iii) Oct-4 accumulates in NLBs, CBs, and PGs at the inert stage of the oocyte. The results confirm the previous suggestion that PFs represent the major nucleoplasmic structural domain involved in active pre-mRNA transcription/processing. The colocalization of Oct-4 with Pol II in both IGCs and PFs in active oocytes (uni/bilaminar follicles) suggests that Oct-4 is intimately associated with the Pol II holoenzyme before and during transcription. The colocalization of Oct-4, Pol II, and SC 35 with coilin-containing structures such as NLBs and CBs at the inert stage (antral follicles) suggests that the latter may represent storage sites for the transcription/splicing machinery during the decline of transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.10545DOI Listing

Publication Analysis

Top Keywords

transcriptionally active
16
oct-4
10
transcription factor
8
mouse oocytes
8
rna polymerase
8
uni/bilaminar follicles
8
antral follicles
8
pfs igcs
8
active stage
8
stage oocyte
8

Similar Publications

Glutamic-pyruvic transaminase 1 deficiency-mediated metabolic reprogramming facilitates colorectal adenoma-carcinoma progression.

Sci Transl Med

January 2025

Department of Colorectal Surgery (General Surgery), Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.

The tumorigenesis of colorectal cancer (CRC) often follows the normal-adenoma-carcinoma (N-A-C) sequence. However, the molecular mechanisms underlying colorectal adenoma carcinogenesis remain largely unknown. Here, we analyzed transcriptomic profile changes in normal, advanced adenoma, and carcinoma tissues from patients with CRC, revealing that glutamic-pyruvic transaminase 1 () in colorectal tissues was down-regulated during the N-A-C process and correlated with poor CRC prognosis.

View Article and Find Full Text PDF

The disease burden of renal cell carcinoma (RCC) has decreased in recent years with advances in treatment, but its pathogeny still remains elusive. We aim to study the role of HOXA3/USP15/SQSTM1 axis on autophagy and M2-type macrophage polarization in RCC. In this study, cell apoptosis and proliferation were assessed by flow cytometry and CCK-8.

View Article and Find Full Text PDF

The de novo synthesis of GABA and its gene regulatory function control hepatocellular carcinoma metastasis.

Dev Cell

December 2024

State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China. Electronic address:

The neurotransmitter gamma-aminobutyric acid (GABA) has been thought to be involved in the development of some types of cancer. Yet, the de novo synthesis of GABA and how it functions in hepatocellular carcinoma (HCC) remain unclear. Here, we report that SLC6A12 acts as a transporter of GABA, and that aldehyde dehydrogenase 9 family member A1 (ALDH9A1), not glutamate decarboxylase 1 (GAD1), generates GABA in human HCC.

View Article and Find Full Text PDF

Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress.

Nat Commun

December 2024

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.

The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana.

View Article and Find Full Text PDF

Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!