No reliable cell culture assay is currently available for monitoring human influenza virus sensitivity to neuraminidase inhibitors (NAI). This can be explained by the observation that because of a low concentration of sialyl-alpha2,6-galactose (Sia[alpha2,6]Gal)-containing virus receptors in conventional cell lines, replication of human virus isolates shows little dependency on viral neuraminidase. To test whether overexpression of Sia(alpha2,6)Gal moieties in cultured cells could make them suitable for testing human influenza virus sensitivity to NAI, we stably transfected MDCK cells with cDNA of human 2,6-sialyltransferase (SIAT1). Transfected cells expressed twofold-higher amounts of 6-linked sialic acids and twofold-lower amounts of 3-linked sialic acids than parent MDCK cells as judged by staining with Sambucus nigra agglutinin and Maackia amurensis agglutinin, respectively. After transfection, binding of a clinical human influenza virus isolate was increased, whereas binding of its egg-adapted variant which preferentially bound 3-linked receptors was decreased. The sensitivity of human influenza A and B viruses to the neuraminidase inhibitor oseltamivir carboxylate was substantially improved in the SIAT1-transfected cell line and was consistent with their sensitivity in neuraminidase enzyme assay and with the hemagglutinin (HA) receptor-binding phenotype. MDCK cells stably transfected with SIAT1 may therefore be a suitable system for testing influenza virus sensitivity to NAI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC165236PMC
http://dx.doi.org/10.1128/jvi.77.15.8418-8425.2003DOI Listing

Publication Analysis

Top Keywords

influenza virus
20
mdck cells
16
virus sensitivity
16
human influenza
16
sensitivity neuraminidase
12
neuraminidase inhibitors
8
sensitivity nai
8
stably transfected
8
sialic acids
8
virus
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!