A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. | LitMetric

Protein kinase M zeta (PKM zeta) is a newly described form of PKC that is necessary and sufficient for the maintenance of hippocampal long term potentiation (LTP) and the persistence of memory in Drosophila. PKM zeta is the independent catalytic domain of the atypical PKC zeta isoform and produces long term effects at synapses because it is persistently active, lacking autoinhibition from the regulatory domain of PKC zeta. PKM has been thought of as a proteolytic fragment of PKC. Here we report that brain PKM zeta is a new PKC isoform, synthesized from a PKM zeta mRNA encoding a PKC zeta catalytic domain without a regulatory domain. Multiple zeta-specific antisera show that PKM zeta is expressed in rat forebrain as the major form of zeta in the near absence of full-length PKC zeta. A PKC zeta knockout mouse, in which the regulatory domain was disrupted and catalytic domain spared, still expresses brain PKM zeta, indicating that this form of PKM is not a PKC zeta proteolytic fragment. Furthermore, the distribution of brain PKM zeta does not correlate with PKC zeta mRNA but instead with an alternate zeta RNA transcript thought incapable of producing protein. In vitro translation of this RNA, however, generates PKM zeta of the same molecular weight as that in brain. Metabolic labeling of hippocampal slices shows increased de novo synthesis of PKM zeta in LTP. Because PKM zeta is a kinase synthesized in an autonomously active form and is necessary and sufficient for maintaining LTP, it serves as an example of a link coupling gene expression directly to synaptic plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M307065200DOI Listing

Publication Analysis

Top Keywords

pkm zeta
40
pkc zeta
28
zeta
22
catalytic domain
16
protein kinase
12
kinase zeta
12
pkm
12
regulatory domain
12
brain pkm
12
pkc
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!