The impact of variable stoichiometry on predator-prey interactions: a multinutrient approach.

Am Nat

Biology Department, University of Texas, PO Box 19498, Arlington, Texas 76019, USA.

Published: July 2003

A model for prey and predators is formulated in which three essential nutrients can limit growth of both populations. Prey take up dissolved nutrients, while predators ingest prey, assimilate a fraction of ingested nutrients that depends on their current nutrient status, and recycle the balance. Although individuals are modeled as identical within populations, amounts of nutrients within individuals vary over time in both populations, with reproductive rates increasing with these amounts. Equilibria and their stability depend on nutrient supply conditions. When nutrient supply increases, unusual results can occur, such as a decrease of prey density. This phenomenon occurs if, with increasing nutrient, predators sequester rather than recycle nutrients. Furthermore, despite use of a linear functional response for predators, high nutrient supply can destabilize equilibria. Responses to nutrient supply depend on the balance between assimilation and recycling of nutrients by predators, which differs depending on the identity of the limiting nutrient. Applied to microbial ecosystems, the model predicts that the efficiency of organic carbon mineralization is reduced when supply of mineral nutrients is low and when equilibria are unstable. The extent to which predators recycle or sequester limiting nutrients for their prey is of critical importance for the stability of predator-prey systems and their response to enrichment.

Download full-text PDF

Source
http://dx.doi.org/10.1086/376577DOI Listing

Publication Analysis

Top Keywords

nutrient supply
16
nutrients
8
nutrients predators
8
nutrient
7
predators
6
prey
5
supply
5
impact variable
4
variable stoichiometry
4
stoichiometry predator-prey
4

Similar Publications

This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.

View Article and Find Full Text PDF

Accurately representing the relationships between nitrogen supply and photosynthesis is crucial for reliably predicting carbon-nitrogen cycle coupling in Earth System Models (ESMs). Most ESMs assume positive correlations amongst soil nitrogen supply, leaf nitrogen content, and photosynthetic capacity. However, leaf photosynthetic nitrogen demand may influence the leaf nitrogen response to soil nitrogen supply; thus, responses to nitrogen supply are expected to be the largest in environments where demand is the greatest.

View Article and Find Full Text PDF

Background: This study aims to demonstrate the 3-dimensional pattern of the nutrient vessels of the triquetrum using micro-computed tomography and determine the safe region for screw applications to the bone.

Methods: Seven fresh frozen cadavers' ulnar and radial arteries were injected with Microfil MV-117. Triquetral bones were dissected and examined using micro-computed tomography.

View Article and Find Full Text PDF

The eastern equatorial Atlantic hosts a productive marine ecosystem that depends on upward supply of nitrate, the primary limiting nutrient in this region. The annual productivity peak, indicated by elevated surface chlorophyll levels, occurs in the Northern Hemisphere summer, roughly coinciding with strengthened easterly winds. For enhanced productivity in the equatorial Atlantic, nitrate-rich water must rise into the turbulent layer above the Equatorial Undercurrent.

View Article and Find Full Text PDF

Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!