Most mammalian cells do not divide indefinitely, owing to a process termed replicative senescence. In human cells, replicative senescence is caused by telomere shortening, but murine cells senesce despite having long stable telomeres. Here, we show that the phenotypes of senescent human fibroblasts and mouse embryonic fibroblasts (MEFs) differ under standard culture conditions, which include 20% oxygen. MEFs did not senesce in physiological (3%) oxygen levels, but underwent a spontaneous event that allowed indefinite proliferation in 20% oxygen. The proliferation and cytogenetic profiles of DNA repair-deficient MEFs suggested that DNA damage limits MEF proliferation in 20% oxygen. Indeed, MEFs accumulated more DNA damage in 20% oxygen than 3% oxygen, and more damage than human fibroblasts in 20% oxygen. Our results identify oxygen sensitivity as a critical difference between mouse and human cells, explaining their proliferative differences in culture, and possibly their different rates of cancer and ageing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4940195 | PMC |
http://dx.doi.org/10.1038/ncb1024 | DOI Listing |
Adv Clin Exp Med
January 2025
Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland.
Background: We still know little about the effective pharmacological treatment of heart failure (HF) associated with the Fontan circulation. One of the new options may be sodium glucose cotransporter-2 inhibitors (SGLT2i), which have been proven effective in classic forms of left ventricular HF.
Objectives: To evaluate the effect and safety of SGLT2i inclusion in adults with Fontan circulation.
Int J Exerc Sci
December 2024
Department of Kinesiology, California State Polytechnic University, Humboldt, Arcata, CA, USA.
High-incline walking is a relatively new trend with little comparative information. This study compared physiological and psychological differences between high-incline walking at 20% grade (HIW) and level-grade jogging (LGJ) at isocaloric intensities in young adults. Twenty-two participants (M = 11, F = 11) aged 19-31 years completed the study.
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
School of Health and Consumer Sciences, South Dakota State University, Brookings, SD, USA.
The high prevalence of obesity and physical inactivity in the U.S. is a public health crisis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.
Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.
View Article and Find Full Text PDFJ Texture Stud
February 2025
Department of Mathematics, Aditya University, Surampalem, Andhra Pradesh, India.
This study investigated the impacts of hot water treatment (HWT) at 50°C or 25°C for 5 min and high-temperature ethylene (HTE) exposure at varying temperatures (20°C, 30°C, or 35°C) and durations (24, 48, or 72 h) on the postharvest quality and antioxidant properties of mature green tomatoes (MG). Color changes, physicochemical characteristics, antioxidant compounds, and overall antioxidant ability were assessed. HWT increased β-carotene levels and oxygen radical absorbance capacity (ORAC) while preserving color metrics, despite later HTE exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!