The Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by immune dysfunction, thrombocytopenia, and eczema. We used a murine model created by knockout of the WAS protein gene (WASP) to evaluate the potential of gene therapy for WAS. Lethally irradiated, male WASP- animals that received transplants of mixtures of wild type (WT) and WASP- bone marrow cells demonstrated enrichment of WT cells in the lymphoid and myeloid lineages with a progressive increase in the proportion of WT T-lymphoid and B-lymphoid cells. WASP- mice had a defective secondary T-cell response to influenza virus which was normalized in animals that received transplants of 35% or more WT cells. The WASP gene was inserted into WASP- bone marrow cells with a bicistronic oncoretroviral vector also encoding green fluorescent protein (GFP), followed by transplantation into irradiated male WASP- recipients. There was a selective advantage for gene-corrected cells in multiple lineages. Animals with higher proportions of GFP+ T cells showed normalization of their lymphocyte counts. Gene-corrected, blood T cells exhibited full and partial correction, respectively, of their defective proliferative and cytokine secretory responses to in vitro T-cell-receptor stimulation. The defective secondary T-cell response to influenza virus was also improved in gene-corrected animals.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2002-11-3489DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
cells
9
wiskott-aldrich syndrome
8
irradiated male
8
male wasp-
8
animals received
8
received transplants
8
wasp- bone
8
bone marrow
8
marrow cells
8

Similar Publications

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus are primarily transmitted through droplets or aerosols from patients. The inactivation effects of existing virus control techniques may vary depending on the environmental factors. Therefore, it is important to establish a suitable evaluation system for assessing virus control techniques against airborne viruses for further real-world implementation.

View Article and Find Full Text PDF

Kinetics and Optimality of Influenza A Virus Locomotion.

Phys Rev Lett

December 2024

Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.

Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.

View Article and Find Full Text PDF

Most psychiatric disorders are heterogeneous and are attributed to the synergistic action of a multitude of factors. It is generally accepted that psychiatric disorders are the outcome of interactions between genetic predisposition and environmental perturbations, which involve psychosocial stress, or alterations in the physiological state of the organism. A number of hypotheses have been presented on such environmental influences that may include direct insults such as injury, malnutrition and hostile living conditions, or indirect sequelae following infection from viruses such as influenza, arboviruses, enteroviruses and several herpesviruses, or the differential expression of human endogenous retroviruses.

View Article and Find Full Text PDF

Virus Evolution in Prolonged Infections of Immunocompromised Individuals.

Clin Chem

January 2025

Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.

Background: Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands.

View Article and Find Full Text PDF

Whereas the intranasally delivered influenza vaccines used in children affect transmission of influenza virus in the community as well as reducing illness, inactivated influenza vaccines administered by intramuscular injection do not prevent transmission and have a variable, sometimes low rate of vaccine effectiveness. Although mucosally administered vaccines have the potential to induce more protective immune response at the site of viral infection, quantitating such immune responses in large scale clinical trials and developing correlates of protection is challenging. Here we show that by using mathematical models immune responses measured in the blood after delivery of vaccine to the lungs by aerosol can predict immune responses in the respiratory tract in pigs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!