Disrupted circadian rhythms in VIP- and PHI-deficient mice.

Am J Physiol Regul Integr Comp Physiol

Mental Retardation Res. Ctr., Univ. of California - Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA.

Published: November 2003

The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in which both VIP and PHI genes were disrupted by homologous recombination. In a light-dark cycle, these mice exhibited diurnal rhythms in activity which were largely indistinguishable from wild-type controls. In constant darkness, the VIP/PHI-deficient mice exhibited pronounced abnormalities in their circadian system. The activity patterns started approximately 8 h earlier than predicted by the previous light cycle. In addition, lack of VIP/PHI led to a shortened free-running period and a loss of the coherence and precision of the circadian locomotor activity rhythm. In about one-quarter of VIP/PHI mice examined, the wheel-running rhythm became arrhythmic after several weeks in constant darkness. Another striking example of these deficits is seen in the split-activity patterns expressed by the mutant mice when they were exposed to a skeleton photoperiod. In addition, the VIP/PHI-deficient mice exhibited deficits in the response of their circadian system to light. Electrophysiological analysis indicates that VIP enhances inhibitory synaptic transmission within the SCN of wild-type and VIP/PHI-deficient mice. Together, the observations suggest that VIP/PHI peptides are critically involved in both the generation of circadian oscillations as well as the normal synchronization of these rhythms to light.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00200.2003DOI Listing

Publication Analysis

Top Keywords

circadian system
12
mice exhibited
12
vip/phi-deficient mice
12
circadian rhythms
8
constant darkness
8
mice
7
circadian
6
disrupted circadian
4
rhythms
4
rhythms vip-
4

Similar Publications

Augmenting Circadian Biology Research With Data Science.

J Biol Rhythms

January 2025

Shiu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California.

The nature of biological research is changing, driven by the emergence of big data, and new computational models to parse out the information therein. Traditional methods remain the core of biological research but are increasingly either augmented or sometimes replaced by emerging data science tools. This presents a profound opportunity for those circadian researchers interested in incorporating big data and related analyses into their plans.

View Article and Find Full Text PDF

Circadian rhythms, intrinsic 24-h cycles that drive rhythmic changes in behavior and physiology, are important for normal physiology and health. Previous work in adults has identified sex differences in circadian rhythms of melatonin, temperature, and the intrinsic period of the human circadian timing system. However, less is known about sex differences in circadian rhythms at other developmental stages.

View Article and Find Full Text PDF

Background: Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states.

View Article and Find Full Text PDF

Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation.

View Article and Find Full Text PDF

The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!