Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-throughput screening (HTS) for potential anticancer agents requires a broad portfolio of assay platforms that may include kinase enzyme assays, protein-protein binding assays, and functional cell-based apoptosis assays. The authors have explored the use of fluorometric microvolume assay technology (the FMAT 8100 HTS System) in three distinct homogeneous HTS assays: (1). a Src tyrosine kinase enzyme assay, (2). a Grb2-SH2 protein-peptide interaction assay, and (3). an annexin V binding apoptosis assay. Data obtained from all three assays suggest that the FMAT system should facilitate the implementation of homogeneous assays for a wide variety of molecular targeted and cell-based screens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087057102239668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!