A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of p73 functional domains necessary for transactivation and growth suppression. | LitMetric

p73, a p53 family member, is highly similar to p53 in both structure and function. Like p53, the p73 protein contains an N-terminal activation domain, a DNA-binding domain, a tetramerization domain, and several PXXP motifs. Previously, we and others have shown that some functional domains in p53, such as the DNA-binding and tetramerization domains, are required for inducing both cell cycle arrest and apoptosis whereas others, such as the second activation domain, the proline-rich domain, and the C-terminal basic domain, are only required for inducing apoptosis. To determine the activity of p73 functional domains, we have generated stable inducible cell lines that express p73beta and various mutants deficient in one or more functional domains. We found that in addition to the DNA-binding domain, p73-mediated growth suppression requires the N-terminal activation domain and the tetramerization domain. However, unlike p53, p73-mediated apoptosis does not require the region adjacent to the activation domain or the entire C-terminal region. Interestingly, while the N- or the C-terminal PXXP motifs are dispensable for p73 function, deletion of both the N- and the C-terminal PXXP motifs renders p73 inactive in transactivation. In addition, we found that substitution of two conserved tandem hydrophobic residues with two hydrophilic ones, which can abrogate the activity of the first activation domain in p53, has no effect on p73 transcriptional activity. Together, we showed that the p73 protein has its own unique determinants for transactivation and growth suppression.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1206470DOI Listing

Publication Analysis

Top Keywords

activation domain
20
functional domains
16
growth suppression
12
pxxp motifs
12
domain
11
p73 functional
8
transactivation growth
8
p53 p73
8
p73 protein
8
n-terminal activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!