Hydrochloric acid induced changes in macrophage migration inhibitory factor in the bladder, peripheral and central nervous system of the rat.

J Urol

Research and Development Service, Bay Pines Veterans Affairs Medical Center, and Department of Surgery, University of South Florida, Tampa, USA.

Published: August 2003

Purpose: We established the presence of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) in the bladder and in nervous system structures innervating the bladder, and evaluated changes in MIF and cyclooxygenase-2 (COX-2) protein levels and expression following chemical cystitis.

Materials And Methods: Male Sprague-Dawley rats were anesthetized and a catheter was introduced into the bladder dome. Cystitis was induced by infusing 0.4 N HCl into the bladder. Control rats received a similar volume of saline. Two hours later the bladder, major pelvic ganglia (MPG), L6/S1 dorsal root ganglia (DRG) and L6/S1 spinal cord were removed and assayed for MIF and COX-2 protein, and mRNA using Western blot and quantitative reverse transcriptase-polymerase chain reaction techniques.

Results: Immunohistochemistry showed MIF located mainly in the urothelium of saline treated rats. Instillation of HCl into the bladder resulted in marked epithelial denudation, moderate edema and vasodilatation in the submucosa. MIF protein levels decreased but MIF mRNA expression remained unchanged in bladders treated with HCl compared with controls. However, MIF protein and mRNA levels increased in the MPG, L6/S1 DRG and L6/S1 spinal cord of HCl treated animals. COX-2 protein was not detected in the bladder, DRG or MPG of saline-treated rats. However, a small amount was present in the L6/S1 cord. On the other hand, HCl treated rats showed marked increases in COX-2 protein levels in all tissues examined. Similarly although cox-2 mRNA was constitutively expressed in all tissues examined, expression increased following HCl treatment.

Conclusions: Chemical cystitis induced by intravesical HCl in rats increases the protein levels and mRNA expression of MIF and COX-2 in central and peripheral nervous system tissues that are involved in innervating the bladder. This finding suggests that MIF may be involved in bladder inflammation and may have a role in the peripheral and central nervous system pathways that regulate bladder reflexes in response to bladder inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ju.0000066001.10343.d5DOI Listing

Publication Analysis

Top Keywords

nervous system
16
cox-2 protein
16
protein levels
16
bladder
12
mif
9
macrophage migration
8
migration inhibitory
8
inhibitory factor
8
peripheral central
8
central nervous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!