The lateral superior olive (LSO) is a binaural auditory brain stem nucleus that plays a central role in sound localization. Survival and maturation of developing LSO neurons critically depend on intracellular calcium signaling. Here we investigated the mechanisms by which glutamatergic afferents from the cochlear nucleus increase intracellular calcium concentration in LSO neurons. Using fura-2 calcium imaging in slices prepared from neonatal mice, we found that cochlear nucleus afferents can activate all major classes of ionotropic and metabotropic glutamate receptors, each of which contributes to an increase in intracellular calcium. The specific activation of different glutamate receptor classes was dependent on response amplitudes and afferent stimulus patterns. Low-amplitude responses elicited by single stimuli were entirely mediated by calcium-impermeable AMPA/kainate receptors that activated voltage-gated calcium channels. Larger-amplitude responses elicited by either single stimuli or stimulus trains resulted in additional calcium influx through N-methyl-d-aspartate receptors. Finally, high-frequency stimulation also recruited group I and group II metabotropic glutamate receptors, both of which mobilized intracellular calcium. This calcium release in turn activated a strong influx of extracellular calcium through a membrane calcium channel that is distinct from voltage-gated calcium channels. Together, these results indicate that before hearing onset, distinct patterns of afferent activity generate qualitatively distinct types of calcium responses, which likely serve in guiding different aspects of LSO development.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00238.2003DOI Listing

Publication Analysis

Top Keywords

intracellular calcium
16
calcium
12
calcium responses
8
lateral superior
8
superior olive
8
specific activation
8
lso neurons
8
cochlear nucleus
8
increase intracellular
8
metabotropic glutamate
8

Similar Publications

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

The Role of Nitric oxide in the sweep gas for patients receiving Extracorporeal Membrane Oxygenation or Cardiopulmonary Bypass.

Can J Cardiol

December 2024

Senior Paediatric Intensivist - Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Australia; Professor - Department of Critical Care, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Australia; Group Leader - ICU Research Clinical Sciences Theme MCRI, Melbourne, Australia. Electronic address:

Nitric oxide (NO) was proclaimed the 1992 "molecule of the year" by Culotta in Science magazine because of its importance in neuroscience, physiology and immunology. Inhaled NO has been in clinical use for over 35 years to decrease pulmonary hypertension and improve oxygenation. Over the last 20 years there has been much research to understand the role of nitric oxide on cell surface receptors, mitochondria, and intracellular processes which involve calcium and superoxide radicals.

View Article and Find Full Text PDF

Thymidine phosphorylase participates in platelet activation and promotes inflammation in rheumatoid arthritis.

Toxicol Appl Pharmacol

December 2024

Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:

The elevated risk of cardiovascular disease (CVD) associated with inflammatory rheumatic diseases has long been recognized. Patients with established rheumatoid arthritis (RA) have a higher mortality rate compared to the general population due to abnormal platelet activation. Thymidine phosphorylase (TYMP) plays a crucial role in platelet activation and thrombosis, following bridging the link between RA and CVD.

View Article and Find Full Text PDF

The inhibition of SLC8A1 promotes Ca-dependent cell death in Gastric Cancer.

Biomed Pharmacother

December 2024

Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy.

Intracellular Ca homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na/Ca exchanger SLC8A1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!