An estimate of the average cost of treatment (COT) was assessed for 53 patients with pancreatic cancer treated between 1997 and 1999 in four hospitals in southern Sweden. Average COT was estimated to Euro18 947, 55% of which was attributable to hospitalization (including surgical procedures), 20% to long-term care and 11% to chemotherapy. Diagnostics and radiotherapy accounted for 9% and 4%, respectively. Median survival was 5.6 months (mean 6.3 months). Treatment costs per patient were negatively correlated with age but were higher for patients receiving chemo/radiotherapy and surgical treatment than for patients receiving only standard supportive care. Disease stage and type of hospital (university versus regional/local hospitals) were not significant predictors of COT per se. Assuming that our estimate of the average cost is representative for Sweden, the total healthcare cost for pancreatic cancer was Euro16 million (dollar14 million), i.e about 2-3% of the COT for all cancer diseases in Sweden. In the USA the cost of pancreatic cancer accounted for the same proportion. However, our estimated cost per patient was about half the amount of the US estimate. The distribution of costs between the different types of treatment services did not differ greatly between Sweden and the USA.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02841860310000386DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
12
estimate average
8
average cost
8
patients receiving
8
cost pancreatic
8
sweden usa
8
cost
6
sweden
5
cost treating
4
pancreatic
4

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.

View Article and Find Full Text PDF

Building of CuO@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells.

Pharmaceutics

December 2024

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.

With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).

View Article and Find Full Text PDF

The Chansu injection (CSI), a sterile aqueous solution derived from Chansu, is applied in clinical settings to support antitumor and anti-radiation treatments. CSI's principal active components, bufadienolides (≥90%), demonstrate potential effects on pancreatic cancer (PDAC), but their underlying mechanisms remain unclear. This study aimed to elucidate the antitumor effects and pathways associated with CSI in PDAC.

View Article and Find Full Text PDF

Albumin-bound paclitaxel (nab-PTX) nanoparticles have been proven effective in treating advanced pancreatic cancer. However, the clinical application of nab-PTX nanoparticles is often associated with suboptimal outcomes and severe side effects due to its non-specific distribution and rapid clearance. This study aims to develop a novel nanoplatform that integrates sonodynamic therapy (SDT) and chemotherapy to enhance treatment efficacy and reduce systemic side effects.

View Article and Find Full Text PDF

The Potential of TRPA1 as a Therapeutic Target in Cancer-A Study Using Bioinformatic Tools.

Pharmaceuticals (Basel)

December 2024

Department of Anatomy, Biophysics and Physiology, Faculty of Biology, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania.

The expression of the transient receptor potential 1 (TRPA1) gene is increased in many solid tumours, and its function relates to inflammation, oxidative stress or the presence of toxic substances. However, little is known about the correlation of clinical parameters with patients' cancer stages, metastases and the degree of tumour infiltration by immune cells. We performed a bioinformatic analysis, using databases and public resources to investigate TRPA1 for many available samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!