The uptake of ovalbumin-conjugated starch microparticles (OVA-MP) was studied after application to porcine respiratory nasal mucosa in vitro. Nasal mucosa from freshly slaughtered pigs was mounted in horizontal Ussing chambers, which permit monitoring of the viability of the tissue exposed to microparticles and ensure that the microparticles are deposited on the mucosa. The antigen-conjugated starch microparticles have previously been shown to produce strong mucosal, cellular and systemic immune responses to conjugated model antigens following oral administration. Intranasal administration of vaccines for mucosal immunisation is an interesting alternative to oral administration, since nasal delivery systems generally require lower doses of antigen and the site of application is better suited for protection against air-borne antigens. Most of a nasally administered dose is deposited on the surface of the respiratory area of the nasal mucosa. It is therefore important to examine whether the microparticles are taken up in this area and, if so, by which cell type. Confocal laser scanning microscopy and transmission electron microscopy (TEM) of the nasal tissue both showed intracellular OVA-MP in non-ciliated epithelial cells after 45 min' incubation. The morphology of the cells in the TEM preparations did not support the presence of either M cells (specialised antigen sampling cells) or adjacent lymphocytes. Anticytokeratin-18 (Ac18) was used as a potential M cell marker. However, there was no indication of Ac18 binding to M cells, but it did bind to mucus-producing cells in the respiratory nasal mucosa. In conclusion, OVA-MP were taken up intracellularly by non-ciliated epithelial cells in the nasal respiratory mucosa of pigs, in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186031000093254DOI Listing

Publication Analysis

Top Keywords

nasal mucosa
20
starch microparticles
12
respiratory nasal
12
uptake ovalbumin-conjugated
8
ovalbumin-conjugated starch
8
nasal
8
mucosa vitro
8
oral administration
8
non-ciliated epithelial
8
epithelial cells
8

Similar Publications

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2 cell subsets, which was distinct from that of ancestral cases.

View Article and Find Full Text PDF

House dust mite induced mucosal barrier dysfunction and type 2 inflammatory responses via the MAPK/AP-1/IL-24 Signaling pathway in allergic rhinitis.

Int Immunopharmacol

January 2025

Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China. Electronic address:

The epithelial barrier, previously regarded only as a physical defense, is now understood to play a vital role in immune responses and the regulation of inflammation. Allergic rhinitis (AR) is a prevalent chronic inflammatory condition of the nasal mucosa, with House Dust Mite (HDM) identified as a significant inhalant allergen that can impair this barrier. IL-24 has emerged as a key cytokine in allergic diseases, involved in maintaining epithelial cell homeostasis.

View Article and Find Full Text PDF

The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the effects of cinnamaldehyde (CA) intervention on transient receptor potential melastatin 8 (TRPM8) expression in human nasal epithelial cells (HNECs) and mouse models of chronic rhinosinusitis (CRS) and determine the alleviating effects of CA on CRS.

Methods: HNECs were treated with CA, and the protein levels and mRNA expression of pro-inflammatory cytokines, namely, interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP), were measured by enzyme-linked immunosorbent assay and real-time reverse-transcription polymerase chain reaction (RT-PCR). TRPM8 expression levels were examined by RT-PCR and western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!