Electric field driven flow in natural porous media.

Magn Reson Imaging

Chemical Services Section, MR Center, The Weizmann Institute of Science, Rehovot 76100, Israel.

Published: February 2004

Electric fields were applied to fluid-saturated packed sand beds (0.23+/-0.03 mm average pore diameter), and the effects on the mobility of the water molecules were monitored using stimulated echo (STE) and pulsed field gradient (PFG) experiments. The mean flow velocity, averaged over the entire sample, is expected to vanish in closed systems, but the PFG and time dependent signal decay was enhanced beyond the effects of thermal diffusion, due to velocity dispersion. The internal flow generated by the electric field was shown to be fully time-reversible upon inverting the electric field polarity (for total flow times of up to 0.4s), a strong indication that the NMR detected displacements were mainly due to electro-osmotic flow (EOF). However, a comparison of the velocity dispersion for different electrolyte concentrations showed that the measured effect scaled with the applied power VI (V = voltage, I = electric current), rather than with the voltage alone, contrary to the prediction of the basic model for EOF in a single capillary channel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0730-725x(03)00162-0DOI Listing

Publication Analysis

Top Keywords

electric field
12
velocity dispersion
8
electric
5
flow
5
field driven
4
driven flow
4
flow natural
4
natural porous
4
porous media
4
media electric
4

Similar Publications

Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications.

View Article and Find Full Text PDF

Optical metasurfaces, components composed of artificial nanostructures, are recognized for pushing boundaries of wavefront manipulation while maintaining a lightweight, compact design that surpasses conventional optics. Such advantages align with the current trends in optical systems, which demand compact communication devices and immersive holographic projectors, driving significant investment from the industry. Although interest in commercialization of optical metasurfaces has steadily grown since the initial breakthrough with diffraction-limited focusing, their practical applications have remained limited by challenges such as, massive-production yield, absence of standardized evaluation methods, and constrained design methodology.

View Article and Find Full Text PDF

Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.

View Article and Find Full Text PDF

Li-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS2 nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS2@NC) are successfully fabricated.

View Article and Find Full Text PDF

Ab initio calculations of electric field gradients (EFGs) in molecular crystals have advanced significantly due to the gauge including projector augmented wave (GIPAW) formalism, which accounts for the infinite periodicity in crystals. However, theoretical accuracies still lag behind experimental ones, making it challenging to distinguish experimentally distinguishable similar structures, a deficiency largely attributed to the limitation of GIPAW codes to generalized gradient approximation (GGA) density functional theory (DFT) functionals. In this study, we investigate whether hybrid DFT functionals can enhance the EFG calculation accuracy and the associated geometry optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!