To elucidate the neuronal basis of the coordination between swallowing and respiration, we examined the swallowing-related activity of respiratory neurons in the ventrolateral respiratory groups of the medulla oblongata of decerebrate, paralyzed and artificially ventilated rats (n = 14). Extracellular recording was made during fictive swallowing evoked by the electrical stimulation of the superior laryngeal nerve from a total of 141 neurons with respiratory rhythm (99 expiratory and 42 inspiratory neurons). The burst of discharge by the hypoglossal nerve was used to monitor the pharyngeal phase of swallowing. The decrementing-expiratory (E-DEC) neurons (n = 62) were activated during (n = 46) or after (n = 10) the hypoglossal bursts, or showed no swallowing-related activity (n = 6). All of the augmenting-expiratory (E-AUG) neurons (n = 37) were silent during the hypoglossal bursts but were activated after each swallow. Inspiratory neurons showed either no swallowing-related bursts (n = 27), or were activated after the hypoglossal bursts (n = 15). Activation of the majority of E-DEC neurons may be related to the arrest of respiration during swallowing, and the post-swallow activation of E-AUG neurons may correspond to the expiratory phase that follows swallowing. We suggest that these behaviors of expiratory neurons are essential in the phase resetting of the respiratory cycle in association with the swallowing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0387-7604(03)00008-1DOI Listing

Publication Analysis

Top Keywords

hypoglossal bursts
12
neurons
9
neurons ventrolateral
8
ventrolateral respiratory
8
respiratory groups
8
swallowing-related activity
8
inspiratory neurons
8
phase swallowing
8
e-dec neurons
8
activated hypoglossal
8

Similar Publications

Orexin-mediated stimulation of orexin receptors 1/2 (OX[1/2]R) may stimulate the diaphragm and genioglossus muscle via activation of inspiratory neurons in the pre-Bötzinger complex, which are critical for the generation of inspiratory rhythm, and phrenic and hypoglossal motoneurons. Herein, we assessed the effects of OX2R-selective agonists TAK-925 (danavorexton) and OX-201 on respiratory function. In in vitro electrophysiologic analyses using rat medullary slices, danavorexton and OX-201 showed tendency and significant effect, respectively, in increasing the frequency of inspiratory synaptic currents of inspiratory neurons in the pre-Bötzinger complex.

View Article and Find Full Text PDF

The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus.

Respir Physiol Neurobiol

February 2024

The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia; Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA. Electronic address:

The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABA receptor agonist isoguvacine (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats.

View Article and Find Full Text PDF

Background: Obstructive sleep apnea (OSA) is a type of sleep-disordered breathing disease, with high prevalence and multiple complications. It seriously affects patients' quality of life and even threatens their lives. Early and effective treatment can significantly improve patients' health conditions.

View Article and Find Full Text PDF

In neonatal rhythmic medullary slices, muscarinic acetylcholine receptor (mAChR) activation of hypoglossal (XII) motoneurons that innervate the tongue has a net excitatory effect on XII inspiratory motor output. Conversely, during rapid eye movement sleep in adult rodents, XII motoneurons experience a loss of excitability partly due to activation of mAChRs. This may be mediated by activation of G-protein-coupled inwardly rectifying potassium (GIRK) channels.

View Article and Find Full Text PDF

Arginine vasopressin potentiates inspiratory bursting in hypoglossal motoneurons of neonatal mice.

Respir Physiol Neurobiol

August 2023

Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States; Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States. Electronic address:

Vasopressin (AVP) acts as a neurotransmitter and its activity can potentiate respiratory activity. Hypoglossal (XII) motoneurons that innervate the tongue express V1a vasopressin receptors, which are excitatory. Therefore, we hypothesized that V1a receptor activation at XII motoneurons would potentiate inspiratory bursting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!