Statistical efficiency of adaptive algorithms.

Neural Netw

ISL, Department of Electrical Engineering, Stanford University, Rm. 273, Packard Electrical Bldg. 350 Serra Mall, Stanford, CA 94305, USA.

Published: September 2003

The statistical efficiency of a learning algorithm applied to the adaptation of a given set of variable weights is defined as the ratio of the quality of the converged solution to the amount of data used in training the weights. Statistical efficiency is computed by averaging over an ensemble of learning experiences. A high quality solution is very close to optimal, while a low quality solution corresponds to noisy weights and less than optimal performance. In this work, two gradient descent adaptive algorithms are compared, the LMS algorithm and the LMS/Newton algorithm. LMS is simple and practical, and is used in many applications worldwide. LMS/Newton is based on Newton's method and the LMS algorithm. LMS/Newton is optimal in the least squares sense. It maximizes the quality of its adaptive solution while minimizing the use of training data. Many least squares adaptive algorithms have been devised over the years, but no other least squares algorithm can give better performance, on average, than LMS/Newton. LMS is easily implemented, but LMS/Newton, although of great mathematical interest, cannot be implemented in most practical applications. Because of its optimality, LMS/Newton serves as a benchmark for all least squares adaptive algorithms. The performances of LMS and LMS/Newton are compared, and it is found that under many circumstances, both algorithms provide equal performance. For example, when both algorithms are tested with statistically nonstationary input signals, their average performances are equal. When adapting with stationary input signals and with random initial conditions, their respective learning times are on average equal. However, under worst-case initial conditions, the learning time of LMS can be much greater than that of LMS/Newton, and this is the principal disadvantage of the LMS algorithm. But the strong points of LMS are ease of implementation and optimal performance under important practical conditions. For these reasons, the LMS algorithm has enjoyed very widespread application. It is used in almost every modem for channel equalization and echo cancelling. Furthermore, it is related to the famous backpropagation algorithm used for training neural networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0893-6080(03)00126-6DOI Listing

Publication Analysis

Top Keywords

adaptive algorithms
16
lms algorithm
16
statistical efficiency
12
lms
9
algorithm
8
quality solution
8
optimal performance
8
lms/newton
8
algorithm lms/newton
8
practical applications
8

Similar Publications

Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has highlighted the crucial role of artificial intelligence (AI) in predicting mortality and guiding healthcare decisions. However, AI models may perpetuate or exacerbate existing health disparities due to demographic biases, particularly affecting racial and ethnic minorities. The objective of this study is to investigate the demographic biases in AI models predicting COVID-19 mortality and to assess the effectiveness of transfer learning in improving model fairness across diverse demographic groups.

View Article and Find Full Text PDF

Background: Drug response prediction is critical in precision medicine to determine the most effective and safe treatments for individual patients. Traditional prediction methods relying on demographic and genetic data often fall short in accuracy and robustness. Recent graph-based models, while promising, frequently neglect the critical role of atomic interactions and fail to integrate drug fingerprints with SMILES for comprehensive molecular graph construction.

View Article and Find Full Text PDF

Dung Beetle algorithm is an intelligent optimization algorithm with advantages in exploitation ability. However, due to the high randomness of parameters, premature convergence and other reasons, there is an imbalance between exploration and exploitation ability, and it is easy to fall into the problem of local optimal solution. The purpose of this study is to improve the optimization performance of dung beetle algorithm and explore its engineering application value.

View Article and Find Full Text PDF

Automatic Sign Language Recognition Systems (ASLR) offers smooth communication between hearing-impaired and normal-hearing individuals, enhancing educational opportunities for impaired. However, it struggles with "curse of dimensionality" due to excessive features resulting in prolonged training time and exhaustive computational demand. This paper proposes technique that integrates machine learning and swarm intelligence to effectively address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!