The involvement of dopamine and nitric oxide in the endocrine and behavioural action of endomorphin-1.

Neuroscience

University of Szeged, Department of Pathophysiology, Albert Szent-Gyorgyi Medical and Pharmaceutical Centre, Neurohumoral Research Group of Hungarian Academy of Sciences, PO Box 427, 6701 Szeged, Hungary.

Published: September 2003

Previous publications have demonstrated a prominent central and corticotropin releasing hormone-mediated action of the endomorphins (EMs) on both open-field behaviour and the hypothalamo-pituitary-adrenal (HPA) axis. In the present experiments, the direct action of endomorphin-1 (EM1) on pituitary adrenocorticotropic hormone (ACTH) release, adrenal corticosterone secretion and the roles of nitric oxide (NO) and dopamine (DA) in the HPA and behavioural responses elicited by EM1 were investigated in mice. In vitro perifusion studies indicated that the action of EM1 on the HPA system appears to be confined to the hypothalamus, as EM1 did not influence the corticosterone secretion from adrenal slices and moderately attenuated the ACTH release from anterior pituitary slices. In in vivo experiments, NG-nitro-L-arginine (L-NNArg) pretreatment brought about a profound inhibition of both the endocrine and the behavioural responses. On the other hand, haloperidol completely abolished the increases in square crossing and rearing, without affecting corticosterone release. The direct action of EM1 on striatal DA release was therefore also investigated in an in vitro superfusion system. Although EM1 did not influence the basal release of tritiated DA, it significantly enhanced the transmitter release evoked by electric impulses and pretreatment with L-NNArg resulted in a considerable inhibition of the release elicited by EM1. In conclusion, our endocrine studies suggest an important role of NO in the mediation of the EM1-evoked corticosterone secretion. They also indicate that EM1 activates the HPA axis at a hypothalamic level and dopamine is not involved in this process. In contrast, the behavioural experiments reflect that the locomotor activation induced by EM1 is mediated by NO and dopamine, and the superfusion studies demonstrate that NO transmits the dopamine release enhancing effect of EM1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(03)00241-0DOI Listing

Publication Analysis

Top Keywords

corticosterone secretion
12
em1
10
nitric oxide
8
endocrine behavioural
8
action endomorphin-1
8
hpa axis
8
direct action
8
release
8
acth release
8
behavioural responses
8

Similar Publications

Hypoxia at high altitude can constrain aerobic metabolism and elicit physiological responses that are detrimental to health and fitness. Responses of the sympathoadrenal system are vital for coping with acute hypoxia, but can become maladaptive with prolonged activation in chronic hypoxia. We examined how adrenal function is altered in high-altitude populations of deer mice (), which have evolved to overcome chronic hypoxia in their native environment.

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Maternal diet has long-term effects on offspring brain development and behavior. Sucrose (table sugar) intakes are high in modern diets, but it is not clear how a maternal high-sucrose diet (HSD) affects the offspring. In rats, a maternal HSD (26% of calories from sucrose, which is human-relevant) alters maternal metabolism and brain and also alters adult offspring endocrinology and behavior in a sex-specific manner.

View Article and Find Full Text PDF

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!