Aims: Status epilepticus is common in children with severe falciparum malaria and is associated with poor outcome. Phenytoin is often used to control status epilepticus, but its water-soluble prodrug, fosphenytoin, may be more useful as it is easier to administer. We studied the pharmacokinetics and clinical effects of phenytoin and fosphenytoin sodium in children with severe falciparum malaria and status epilepticus.

Methods: Children received intravenous (i.v.) phenytoin as a 18 mg kg-1 loading dose infused over 20 min followed by a 2.5 mg x kg(-1) 12 hourly maintenance dose infused over 5 min (n = 11), or i.v. fosphenytoin, administered at a rate of 50 mg x min(-1) phenytoin sodium equivalents (PE; n = 16), or intramuscular (i.m.) fosphenytoin as a 18 mg x kg(-1) loading dose followed by 2.5 mg x kg(-1) 12 hourly of PE (n = 11). Concentrations of phenytoin in plasma and cerebrospinal fluid (CSF), frequency of seizures, cardiovascular effects (respiratory rate, blood pressure, trancutaneous oxygen tension and level of consciousness) and middle cerebral artery (MCA) blood flow velocity were monitored.

Results: After all routes of administration, a plasma unbound phenytoin concentration of more than 1 microg x ml(-1) was rapidly (within 5-20 min) attained. Mean (95% confidence interval) steady state free phenytoin concentrations were 2.1 (1.7, 2.4; i.v. phenytoin, n = 6), 1.5 (0.96, 2.1; i.v. fosphenytoin, n = 11) and 1.4 (0.5, 2.4; i.m. fosphenytoin, n = 6), and were not statistically different for the three routes of administration. Median times (range) to peak plasma phenytoin concentrations following the loading dose were 0.08 (0.08-0.17), 0.37 (0.33-0.67) and 0.38 (0.17-2.0) h for i.v. fosphenytoin, i.v. phenytoin and i.m. fosphenytoin, respectively. CSF: plasma phenytoin concentration ratio ranged from 0.12 to 0.53 (median = 0.28, n = 16). Status epilepticus was controlled in only 36% (4/11) following i.v. phenytoin, 44% (7/16), following i.v. fosphenytoin and 64% (7/11) following i.m. fosphenytoin administration, respectively. Cardiovascular parameters and MCA blood flow were not affected by phenytoin administration.

Conclusions: Phenytoin and fosphenytoin administration at the currently recommended doses achieve plasma unbound phenytoin concentrations within the therapeutic range with few cardiovascular effects. Administration of fosphenytoin i.v. or i.m. offers a practical and convenient alternative to i.v. phenytoin. However, the inadequate control of status epilepticus despite rapid achievement of therapeutic unbound phenytoin concentrations warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1884335PMC
http://dx.doi.org/10.1046/j.1365-2125.2003.01829.xDOI Listing

Publication Analysis

Top Keywords

status epilepticus
20
phenytoin
18
phenytoin fosphenytoin
16
phenytoin concentrations
16
fosphenytoin
13
children severe
12
loading dose
12
unbound phenytoin
12
pharmacokinetics clinical
8
clinical effects
8

Similar Publications

Background: Presenilin 2 (PSEN2) is one of three deterministic risk genes that increases the risk of early-onset Alzheimer's Disease. People with PSEN2 variants have increased risk of unprovoked seizures versus age-matched unaffected individuals yet few studies have interrogated the contributions of PSEN2 on seizure susceptibility. Critically, PSEN proteolytic capacity may be a novel regulator of hippocampal kainate-type glutamate receptors (KARs), with PSEN deletion reducing KAR availability and synaptic transmission in vitro (Barthet et al 2022).

View Article and Find Full Text PDF

Background: Ampicillin/sulbactam (ABPC/ SBT) is one of the most common β-lactam antibiotics for patients with status epilepticus complicated with aspiration pneumonia. It is known that β-lactam antibiotics such as penicillin aggravate epileptic seizures or status epilepticus. Here, we investigated whether ABPC/SBT aggravates seizures using electroencephalography (EEG) monitoring.

View Article and Find Full Text PDF

Evaluation of Brain Impairment Using Proton Exchange Rate MRI in a Kainic Acid-Induced Rat Model of Epilepsy.

Mol Imaging Biol

January 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.

Purpose: Proton exchange rate (K) is a valuable biophysical metric. K MRI may augment conventional structural MRI by revealing brain impairments at the molecular level. This study aimed to investigate the feasibility of K MRI in evaluating brain injuries at multiple epilepsy stages.

View Article and Find Full Text PDF

Objective: Electroconvulsive therapy (ECT) has been occasionally applied as a treatment for super-refractory status epilepticus (SRSE). However, the effects of ECT on electrographic activity and related clinical outcomes are largely unknown. Here, we use quantitative approaches on electroencephalography (EEG) data to evaluate the neurophysiological influences of ECT and how they may relate to patient survival.

View Article and Find Full Text PDF

Development of a nomogram model for early prediction of refractory convulsive status epilepticus.

Epilepsy Behav

December 2024

Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China. Electronic address:

Introduction: We aim to identify risk factors that predict refractory convulsive status epilepticus (RCSE) and to develop a model for early recognition of patients at high risk for RCSE.

Methods: This study involved 200 patients diagnosed with convulsive status epilepticus (CSE), of whom 73 were RCSE and 127 were non-RCSE. Variables included demographic information, lifestyle factors, medical history, comorbidities, clinical symptoms, neuroimaging characteristics, laboratory tests, and nutritional scores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!