One of the major survival challenges of premature birth is production of lung surfactant. The lipid component of surfactant, dipalmitoyl PC (DPPC), increases in concentration in the period before normal term birth via a net shift in FA composition away from unsaturates. We investigated the influence of dietary DHA and arachidonic acid (AA) on lung FA composition and DPPC concentration in term and preterm baboons. Pregnant animals/neonates were randomized to one of four groups: breast-fed (B), term formula-fed (T-, preterm formula-fed (P-, and preterm fed formula supplemented with DHA-AA (P+). Breast milk contained 0.68%wt DHA and the P+ group formula contained 0.61%wt DHA. In the preterm groups (P- and P+), pregnant females received a course of antenatal corticosteroids. At the adjusted age of 4 wk, neonate lung tissue was harvested, and FA composition and DPPC were analyzed. Palmitate was approximately 28%wt of lung total FA and no significant differences were found among the four treatment groups. In contrast, DPPC in the B group lung tissue was significantly greater than DPPC in the unsupplemented groups, but not compared with the P+ group. The B and P+ groups were not significantly different in DHA and AA, but were different compared with the unsupplemented (T, P-) groups. These results indicate that LCP supplementation increases lung DHA and AA, without compromising overall lung 16:0 or DPPC. The shift in FA composition toward greater unsaturation in the groups consuming LCP supported improved surfactant lipid concentration in preterm neonate lungs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11745-003-1079-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!