A fractal analysis of human cranial sutures.

Cleft Palate Craniofac J

Department of Surgery, Medical College of Georgia, Augusta, Georgia 30912-4080, USA.

Published: July 2003

Objectives: Many biological structures are products of repeated iteration functions. As such, they demonstrate characteristic, scale-invariant features. Fractal analysis of these features elucidates the mechanism of their formation. The objectives of this project were to determine whether human cranial sutures demonstrate self-similarity and measure their exponents of similarity (fractal dimensions).

Design: One hundred three documented human skulls from the Terry Collection of the Smithsonian Institution were used. Their sagittal sutures were digitized and the data converted to bitmap images for analysis using box-counting method of fractal software.

Results: The log-log plots of the number of boxes containing the sutural pattern, N(r), and the size of the boxes, r, were all linear, indicating that human sagittal sutures possess scale-invariant features and thus are fractals. The linear portion of these log-log plots has limits because of the finite resolution used for data acquisition. The mean box dimension, D(b), was 1.29289 +/- 0.078457 with a 95% confidence interval of 1.27634 to 1.30944.

Conclusions: Human sagittal sutures are self-similar and have a fractal dimension of 1.29 by the box-counting method. The significance of these findings includes: sutural morphogenesis can be described as a repeated iteration function, and mathematical models can be constructed to produce self-similar curves with such D(b). This elucidates the mechanism of actual pattern formation. Whatever the mechanisms at the cellular and molecular levels, human sagittal suture follows the equation log N(r) = 1.29 log 1/r, where N(r) is the number of square boxes with sides r that are needed to contain the sutural pattern and r equals the length of the sides of the boxes.

Download full-text PDF

Source
http://dx.doi.org/10.1597/1545-1569_2003_040_0409_afaohc_2.0.co_2DOI Listing

Publication Analysis

Top Keywords

sagittal sutures
12
human sagittal
12
fractal analysis
8
human cranial
8
cranial sutures
8
repeated iteration
8
scale-invariant features
8
elucidates mechanism
8
box-counting method
8
log-log plots
8

Similar Publications

Jansen metaphyseal chondrodysplasia (JMC) is an ultra-rare disorder caused by constitutive activation of parathyroid hormone type 1 receptor (PTH1R). We sought to characterize the craniofacial phenotype of patients with the disease. Six patients with genetically confirmed JMC underwent comprehensive craniofacial phenotyping revealing a distinct facial appearance that prompted a cephalometric analysis demonstrating a pattern of mandibular retrognathia.

View Article and Find Full Text PDF

Craniosynostosis, a condition marked by the premature fusion of one or more cranial sutures, exhibits diverse phenotypes. This study aims to advance the understanding of these phenotypes beyond the conventional 2-dimensional analysis by focusing on identifying indicators of increased intracranial pressure (ICP) such as bony thinning or irregularities in skull morphology. A retrospective review was conducted for all pediatric patients with midline craniosynostosis who presented to our tertiary academic center for evaluation.

View Article and Find Full Text PDF

Bifrontal decompressive craniectomy (DC), which was once a popular technique for treating midline mass lesions, has seen a notable decline in its therapeutic use within modern neurosurgery. Despite its diminished clinical use, the procedure offers considerable value as an educational tool for surgical training. This study used a Thiel-embalmed cadaver to demonstrate the bifrontal DC procedure, including a Souttar incision, strategic (MacCarty, zygomatic, and apical) keyhole/burr hole placement, superior sagittal sinus suturing, left frontal lobe decortication, and microscopic visualization of the anterior cranial fossa.

View Article and Find Full Text PDF

Background: Craniosynostosis may result in malformations of the orbit, which can be observed in clinical presentations. Craniosynostosis impairs the normal growth of the skull, which typically occurs perpendicular to the fused suture. Craniosynostosis is classified into non-syndromic and syndromic, with an incidence of 1: 2000-2500 live births.

View Article and Find Full Text PDF

Purpose: To compare the biomechanics of a drop vertical jump (DVJ) landing task and functional outcomes among patients with anterior cruciate ligament reconstruction (ACLR) with quadriceps tendon (QT) and patellar tendon (PT) autografts.

Methods: Physically active patients who underwent primary ACLR with either a QT or PT autograft were included in this study. All were within 6 months to 2 years after surgery and cleared for return to physical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!