Members of a homologous series of pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers with C8-O-(CH(2))(n)-O-C8' diether linkages (n = 3-6 for 2a-d, respectively) have been studied for their ability to interact with oligonucleotide duplexes containing potential target binding sites. The results confirm earlier predictions that the n = 3 analogue (2a, DSB-120) will covalently bind to a 5'-Pu-GATC-Py sequence by cross-linking opposite-strand guanines separated by 2 bp. Preference for this DNA sequence is shown using oligonucleotides with altered bases between and/or flanking these guanines. The more extended PBD dimer 2c (n = 5) can span an extra base pair and cross-link the 5'-Pu-GA(T/A)TC-Py sequence. The ability of each homologue to cross-link linear plasmid DNA has been determined, with a rank order that correlates with the reported order of in vitro cytotoxicity: n = 3 (2a) > n = 5 (2c) > n = 6 (2d) > n = 4 (2b). The n = 3 homologue (2a) is >300-fold more efficient at cross-linking DNA than the clinically used cross-linking agent melphalan under the same conditions. Kinetic studies reveal that the n = 3 and 5 dimers achieve faster cross-linking to plasmid DNA (108 and 81% cross-linking h(-1) microM(-1) at 37 degrees C, respectively), whereas the n = 4 and 6 homologues are significantly less efficient at 10.3 and 23% cross-linking h(-1) microM(-1), respectively. Alternating activity for the odd n and even n dimers is probably due to configurational factors governed by the spatial separation of the PBD subunits and the flexible character of the tethering linkage. Molecular modeling confirms the order of cross-linking reactivity, and highlights the role of linker length in dictating sequence recognition for this class of DNA-reactive agent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi034313tDOI Listing

Publication Analysis

Top Keywords

cross-linking
8
molecular modeling
8
plasmid dna
8
cross-linking h-1
8
h-1 microm-1
8
dna
5
sequence-selective recognition
4
recognition duplex
4
duplex dna
4
dna covalent
4

Similar Publications

Attachment of Hydrogel Patches to Eye Tissue through Gel Transfer using Flexible Foils.

ACS Appl Mater Interfaces

January 2025

Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.

Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.

View Article and Find Full Text PDF

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair.

ACS Appl Bio Mater

January 2025

Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.

Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.

View Article and Find Full Text PDF

Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch.

Biopolymers

March 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.

The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased.

View Article and Find Full Text PDF

Glycan-Matchmade Multivalent Decoration of Enzyme Labels for Amplified Electrochemical Detection of Glycoproteins.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Glycoproteins are of significant value to liquid biopsy of human diseases. Herein, we present a universal electrochemical platform for the amplified detection of glycoproteins, taking advantage of the glycan-matchmade multivalent decoration of enzyme labels for the enzymatic signal amplification. Briefly, the glycan-matchmade multivalent decoration involves two steps, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!