AI Article Synopsis

  • The study investigates how the expression of MHC class I molecules in lung metastases from a mouse fibrosarcoma tumor clone varies between immunocompetent and immunodeficient mice.
  • In immunocompetent mice, the absence of specific mRNA associated with the MHC class I antigen-processing machinery (APM) led to MHC class I negative tumors, while in immunodeficient mice, these genes were expressed, resulting in MHC class I positive tumors.
  • The findings suggest that the presence or absence of MHC class I molecules significantly impacts tumor growth and immune response, highlighting the role of T cells in immune surveillance against tumors and how tumors can evade detection.

Article Abstract

Previous reports from our group indicated that the MHC class I phenotype of metastatic lung colonies produced by a mouse fibrosarcoma tumor clone (B9) were, depending on the immune status of the host, MHC class I negative in immunocompetent mice and MHC class I positive in immunodeficient athymic nude/nude mice. Now we report the identification of the molecular alterations responsible for the changes of MHC class I molecules in both situations. Metastatic nodes were analyzed for the mRNA level of H-2 class I and beta2-microglobulin genes, and several gene components of the major histocompatibility complex (MHC) class I antigen-processing machinery (APM). These included the genes coding for the low-molecular-weight proteins LMP2, LMP7, LMP10, the transporter associated with antigen processing (TAP-1, TAP-2), and calnexin, calreticulin, tapasin, PA-28-alpha, PA-28-beta, ERP-59 and ER-60. Analyses with RT-PCR showed that TAP-1, TAP2, LMP-2, LMP7, LMP10, tapasin and calnexin mRNA specific for these genes was absent in metastases produced in immunocompetent mice. In contrast, similar techniques with mRNA preparations obtained from metastatic nodes from immunodeficient mice showed that the mRNA expression level of these genes was highly positive. Interestingly, the MHC class I-positive or negative phenotypes of the metastatic colonies correlated with in vivo immunogenicity. H-2 positive metastasis grew more slowly than the H-2 negative ones when injected intrafootpat in syngeneic immunocompetent animals and were finally rejected. These results provide evidence of the role of T cells in immune surveillance against tumors and identify a mechanism targeted by antitumor T lymphocytes to generate MHC class I-negative tumor escape variants.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.11241DOI Listing

Publication Analysis

Top Keywords

mhc class
32
mhc
8
class
8
immunocompetent mice
8
metastatic nodes
8
lmp7 lmp10
8
metastatic
5
class i-deficient
4
i-deficient metastatic
4
metastatic tumor
4

Similar Publications

Based on the success of cancer immunotherapy, personalized cancer vaccines have emerged as a leading oncology treatment. Antigen presentation on MHC class I (MHC-I) is crucial for the adaptive immune response to cancer cells, necessitating highly predictive computational methods to model this phenomenon. Here, we introduce HLApollo, a transformer-based model for peptide-MHC-I (pMHC-I) presentation prediction, leveraging the language of peptides, MHC, and source proteins.

View Article and Find Full Text PDF

Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4 T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Chlamydiosis is a common infectious disease impacting koalas and is a major cause of population decline due to resulting mortality and infertility. Polymorphisms of major histocompatibility complex (MHC) genes influence chlamydial disease outcomes in several species but koala studies have produced variable results. We aimed to identify the MHC II DAB and DBB repertoire of koalas from Liverpool Plains, NSW, a population heavily impacted by chlamydiosis.

View Article and Find Full Text PDF

Mechanisms of Low MHC I Expression and Strategies for Targeting MHC I with Small Molecules in Cancer Immunotherapy.

Cancer Lett

December 2024

Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China. Electronic address:

Major histocompatibility complex (MHC) class I load antigens and present them on the cell surface, which transduces the tumor-associated antigens to CD8 T cells, activating the acquired immune system. However, many tumors downregulate MHC I expression to evade immune surveillance. The low expression of MHC I not only reduce recognition by- and cytotoxicity of CD8 T cells, but also seriously weakens the anti-tumor effect of immunotherapy by restoring CD8 T cells, such as immune checkpoint inhibitors (ICIs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!