Glial tumors are the most common tumors of the nervous system, affecting individuals at any age. Since understanding of the molecular pathologies underlying human gliomas is still very poor, the treatment and therefore prognosis of this malignancy could not yet be improved. In order to determine whether different glioblastoma-associated genomic aberrations may serve as prognostic markers in combination with histopathological findings, 20 primary glioblastoma multiforme tumors were screened by comparative genomic hybridization, and the results were compared with histopathological and clinical features. All tumors showed genomic copy aberrations detected by comparative genomic hybridization. Regional and numerical increases in chromosome 7 copy number were the most frequently seen abnormality (10/20 tumors), followed by loss of chromosome 10 (8/20). Both of these aberrations were associated with shorter surveillance time. Chromosome 12q amplification was detected in seven tumors. Loss of 17p, 1p, and 19q in combination was seen in three cases. One of them was a giant cell GBM, whereas the remaining two cases were still alive. Combination of chromosome 1p and 19q deletions was also seen in a case with long surveillance. According to the preliminary findings of this study, in addition to the EGFR gene, amplification of other genes on chromosome 7 and the deletion of PTEN gene and other cancer-related genes on chromosome 10 appeared important to the development of glioblastoma multiforme and were associated with poor prognosis, whereas the combination of chromosome 1p and 19q deletions seems to be an informative molecular marker for better prognosis. The clinical features and genetic alterations of primary and secondary glioblastoma multiforme should be compared in large series to clarify the effective prognostic markers; and further molecular analyses focused on chromosomes 7 and 10 will be very helpful for understanding the molecular mechanisms underlying the progression of glioblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10143-003-0279-4 | DOI Listing |
This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFToxics
November 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
DEHP is a plasticizer that is widely found in our water environment and poses a significant risk to the environment and human health. Long-term exposure to DEHP can cause endocrine disruption and interfere with the organism's normal functioning. In order to explore the potential effects of DEHP on the development of biological brain tissues, this study used bioinformatics analysis to confirm the diagnostic and prognostic value of PER3 in gliomas and further validated the neurotoxicity of DEHP using methods such as behavioral experiments and molecular biology in zebrafish.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
Background: Glioblastoma is an aggressive and incurable type of brain cancer. Little progress has been made in the development of effective new therapies in the past decades. The blood-brain barrier (BBB) and drug efflux pumps, which together hamper drug delivery to these tumors, play a pivotal role in the gap between promising preclinical findings and failure in clinical trials.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia.
Indolo[2,3-]pyrrolo[3,4-]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Cell viability was estimated by an MTT assay.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
Glioblastoma is a malignant tumor with a poor prognosis for the patient due to its high lethality and limited chemotherapy available. Therefore, from the point of view of chemotherapy treatment, glioblastoma can be considered an unmet medical need. This has led to the investigation of new drugs for monotherapy or associations, acting by synergistic pharmacological mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!