Several large, prospective, randomized, clinical outcome trials have shown that calcium channel blockers are effective and safe antihypertensive drugs compared with placebo and reduce the cardiovascular morbidity and mortality of treated patients. In other studies, when compared with conventional antihypertensive drugs, they demonstrated similar blood pressure-lowering effects and similar reductions in cardiovascular morbidity and mortality, with the exception of a higher incidence of heart failure and fatal myocardial infarction in some studies. However, considering all the evidence available today, these drugs should be considered safe for the treatment of the uncomplicated hypertensive patient in combination with other drugs. They can also be used as first-line therapy for older, stroke-prone hypertensive patients. In addition, when a calcium channel blocker is indicated for better blood pressure control, its use should not be withheld for safety concerns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11906-003-0037-6 | DOI Listing |
Clin Rheumatol
January 2025
Center for Physical Medicine and Rehabilitation, University Clinical Center of Serbia, Belgrade, Serbia.
Ectopic calcifications occur in tendons, ligaments, entheses, muscles, and fasciae, and are often associated with pain and inflammation. In clinical settings, these calcifications are commonly treated by physical therapy and/or surgical interventions. However, there is not enough understanding of pharmacological treatments as primary cures, supportive therapy to physical or surgical treatment, or even preventive measures to avoid or diminish the development of ectopic calcifications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.
: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), 48018 Faenza, Italy.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highliting the urgent need for new therapeutic strategies. Peptide-based therapies have demonstrated significant potential for treating CVDs; however, their clinical application is hindered by their limited stability in physiological fluids. To overcome this challenge, an effective drug delivery system is essential to protect and efficiently transport peptides to their intended targets.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle.
View Article and Find Full Text PDFCells
January 2025
Department of Neurosciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!