Predicted increases in atmospheric CO(2) and global mean temperature may alter important plant-insect associations due to the direct effects of temperature on insect development and the indirect effects of elevated temperature and CO(2) enrichment on phytochemicals important for insect success. We investigated the effects of CO(2) and temperature on the interaction between gypsy moth (Lymantria dispar L.) larvae and red maple (Acer rubrum L.) saplings by bagging first instar larvae within open-top chambers at four CO(2)/temperature treatments: (1) ambient temperature, ambient CO(2), (2) ambient temperature, elevated CO(2) (+300 microl l(-1) CO(2)), (3) elevated temperature (+3.5 degrees C), ambient CO(2), and (4) elevated temperature, elevated CO(2). Larvae were reared to pupation and leaf samples taken biweekly to determine levels of total N, water, non-structural carbohydrates, and an estimate of defensive phenolic compounds in three age classes of foliage: (1) immature, (2) mid-mature and (3) mature. Elevated growth temperature marginally reduced (P <0.1) leaf N and significantly reduced ( P <0.05) leaf water across CO(2) treatments in mature leaves, whereas leaves grown at elevated CO(2) concentration had a significant decrease in leaf N and a significant increase in the ratio of starch:N and total non-structural carbohydrates:N. Leaf N and water decreased and starch:N and total non-structural carbohydrates:N ratios increased as leaves aged. Phenolics were unaffected by CO(2) or temperature treatment. There were no interactive effects of CO(2) and temperature on any phytochemical measure. Gypsy moth larvae reached pupation earlier at the elevated temperature (female =8 days, P <0.07; male =7.5 days, P <0.03), whereas mortality and pupal fresh weight of insects were unrelated to either CO(2), temperature or their interaction. Our data show that CO(2) or temperature-induced alterations in leaf constituents had no effect on insect performance; instead, the long-term exposure to a 3.5 degrees C increase in temperature shortened insect development but had no effect on pupal weight. It appears that in some tree-herbivorous insect systems the direct effects of an increased global mean temperature may have greater consequences for altering plant-insect interactions than the indirect effects of an increased temperature or CO(2) concentration on leaf constituents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-003-1327-z | DOI Listing |
J Environ Manage
December 2024
School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China. Electronic address:
Karstification can reduce the CO concentration in the atmosphere/soil. Accurate estimation of karst carbon sinks is crucial for the study of global climate change. In this study, the Lijiang River Basin was taken as the research area.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.
View Article and Find Full Text PDFTree Physiol
December 2024
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå.
Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.
View Article and Find Full Text PDFMar Environ Res
December 2024
Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:
The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China. Electronic address:
NH-MIL-125 with abundant porosity and specific interactions with CO molecules, has been demonstrate great potential in the field of photocatalytic CO reduction. However, conventional NH-MIL-125 and their composites much lower CO photoreduction efficiency in aerobic environments because of the O competition. To circumvent the issue, this study modifies NH-MIL-125 through crystal facet engineering to enhance its selective CO adsorption and photocatalytic efficiency in the environment of impurity CO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!