A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. | LitMetric

Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics.

J Comput Neurosci

Department of Biomedical Engineering, Center for BioDynamics, Boston University, 44 Cummington Street, Boston, MA 02215, USA.

Published: October 2003

Behavior of a network of neurons is closely tied to the properties of the individual neurons. We study this relationship in models of layer II stellate cells (SCs) of the medial entorhinal cortex. SCs are thought to contribute to the mammalian theta rhythm (4-12 Hz), and are notable for the slow ionic conductances that constrain them to fire at rates within this frequency range. We apply "spike time response" (STR) methods, in which the effects of synaptic perturbations on the timing of subsequent spikes are used to predict how these neurons may synchronize at theta frequencies. Predictions from STR methods are verified using network simulations. Slow conductances often make small inputs "effectively large"; we suggest that this is due to reduced attractiveness or stability of the spiking limit cycle. When inputs are (effectively) large, changes in firing times depend nonlinearly on synaptic strength. One consequence of nonlinearity is to make a periodically firing model skip one or more beats, often leading to the elimination of the anti-synchronous state in bistable models. Biologically realistic membrane noise makes such "cycle skipping" more prevalent, and thus can eradicate bistability. Membrane noise also supports "sparse synchrony," a phenomenon in which subthreshold behavior is uncorrelated, but there are brief periods of synchronous spiking.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1024474819512DOI Listing

Publication Analysis

Top Keywords

str methods
8
membrane noise
8
synchronization coupled
4
coupled excitatory
4
neurons
4
excitatory neurons
4
neurons relating
4
relating network
4
network behavior
4
behavior biophysics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!