The roles of Cbl-b and c-Cbl in insulin-stimulated glucose transport.

J Biol Chem

Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.

Published: September 2003

AI Article Synopsis

Article Abstract

Previous studies suggest that the stimulation of glucose transport by insulin involves the tyrosine phosphorylation of c-Cbl and the translocation of the c-Cbl/CAP complex to lipid raft subdomains of the plasma membrane. We now demonstrate that Cbl-b also undergoes tyrosine phosphorylation and membrane translocation in response to insulin in 3T3-L1 adipocytes. Ectopic expression of APS facilitated insulin-stimulated phosphorylation of tyrosines 665 and 709 in Cbl-b. The phosphorylation of APS produced by insulin drove the translocation of both c-Cbl and Cbl-b to the plasma membrane. Like c-Cbl, Cbl-b associates constitutively with CAP and interacts with Crk upon insulin stimulation. Cbl proteins formed homo- and heterodimers in vivo, which required the participation of a conserved leucine zipper domain. A Cbl mutant incapable of dimerization failed to interact with APS and to undergo tyrosine phosphorylation in response to insulin, indicating an essential role of Cbl dimerization in these processes. Thus, both c-Cbl and Cbl-b can initiate a phosphatidylinositol 3-kinase/protein kinase B-independent signaling pathway critical to insulin-stimulated GLUT4 translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M300664200DOI Listing

Publication Analysis

Top Keywords

tyrosine phosphorylation
12
c-cbl cbl-b
12
glucose transport
8
plasma membrane
8
response insulin
8
c-cbl
5
insulin
5
phosphorylation
5
cbl-b
5
roles cbl-b
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!