Genetic deficiency of human purine nucleoside phosphorylase (PNP) causes T-cell immunodeficiency. The enzyme is therefore a target for autoimmunity disorders, tissue transplant rejection and T-cell malignancies. Transition state analysis of bovine PNP led to the development of immucillin-H (ImmH), a powerful inhibitor of bovine PNP but less effective for human PNP. The transition state of human PNP differs from that of the bovine enzyme and transition state analogues specific for the human enzyme were synthesized. Three first generation transition state analogues, ImmG (Kd = 42 pM), ImmH (Kd = 56 pM), and 8-aza-ImmH (Kd = 180 pM), are compared with three second generation DADMe compounds (4'-deaza-1'-aza-2'-deoxy-1'-(9-methylene)-immucillins) tailored to the transition state of human PNP. The second generation compounds, DADMe-ImmG (Kd = 7pM), DADMe-ImmH (Kd = 16 pM), and 8-aza-DADMe-ImmH (Kd = 2.0 nM), are superior for inhibition of human PNP by binding up to 6-fold tighter. The DADMe-immucillins are the most powerful PNP inhibitors yet described, with Km/Kd ratios up to 5,400,000. ImmH and DADMe-ImmH are orally available in mice; DADMe-ImmH is more efficient than ImmH. DADMe-ImmH achieves the ultimate goal in transition state inhibitor design in mice. A single oral dose causes inhibition of the target enzyme for the approximate lifetime of circulating erythrocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.C300259200 | DOI Listing |
Environ Sci Technol
January 2025
China Three Gorges Corporation, Beijing 100038, China.
With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.
The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.
View Article and Find Full Text PDFHeliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.
Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions.
View Article and Find Full Text PDFMDM Policy Pract
January 2025
Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, California, USA.
Unlabelled: Consumption of sugar-sweetened beverages (SSBs) contributes to weight gain, obesity, and diabetes. Soda tax has been proposed to reduce consumption of SSBs. What remains unclear is whether the soda tax has an effect on health and health care costs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!