To better understand the interaction between Mycoplasma bovis and its bovine host, we have characterized the immune response generated during an experimental lung infection with M. bovis. Proliferation ([3H]-thymidine blastogenesis) and Th1/Th2 cytokine production were used to monitor peripheral cellular immune responses. Flow cytometry analysis was used to determine T-cell subset activity by CD25 expression. Humoral immune response was monitored by the identification of antigen-specific IgG1 and IgG2 isotypes over time. Herein, we show that M. bovis antigen stimulates activation of CD4+ and CD8+ cells in vitro in a manner consistent with memory, and that gammadelta-T cells are activated by antigen in a manner consistent with innate immunity. In addition, the percentage of cells producing IFN-gamma during recall response is equal to that of IL-4 producing cells. Serological analysis shows M. bovis stimulates increased production of antigen-specific IgG1 while very little IgG2 is produced. We therefore submit that experimental lung infection of cattle with M. bovis results in a Th2-skewed immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-2427(03)00056-4 | DOI Listing |
Vet Res
January 2025
Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy.
View Article and Find Full Text PDFAnim Microbiome
January 2025
Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, 32610, USA.
Background: Cows that develop metritis experience dysbiosis of their uterine microbiome, where opportunistic pathogens overtake uterine commensals. An effective immune response is critical for maintaining uterine health. Nonetheless, periparturient cows experience immune dysregulation, which seems to be intensified by prepartum over-condition.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.
Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.
Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.
Biol Direct
January 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.
Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!