beta-Phenylpyruvate induces long-term neurobehavioral damage and brain necrosis in neonatal mice.

Behav Brain Res

Laboratory for Anesthesia, Pain and Neural Research, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel.

Published: July 2003

Administration of beta-phenylpyruvate at high concentrations reduces blood glucose levels and causes neurophysiological deterioration in insulin-deprived mice. We investigated whether beta-phenylpyruvate administration would cause long-term neurobehavioral and structural central neural damage in mice. Neonatal ICR mice were injected with beta-phenylpyruvate (0.5-2.5mg/g body weight (BW)) or saline (control). Blood glucose was measured. At 43 days of age, the animals were put on a 1-week regimen of restricted water supply, after which the mice were introduced into an eight-arm maze for evaluation of spatial-memory abilities (hippocampal-related behavior). Times for visiting all eight arms and number of entries until completion of the eight-arm visits (maze criteria) were measured. The test was repeated once daily for 5 days. TUNEL assay was used for detection of brain apoptosis. beta-Phenylpyruvate-treated animals (except the 0.5mg/g group) developed hypoglycemia. Treated mice required more time to assimilate the maze structure. Mice treated with 2.5mg/g beta-phenylpyruvate did not meet the maze criteria as compared with control (P<0.001) and suffered from necrotic changes in the hippocampal regions. The above-mentioned neurobehavioral damage was abrogated by coadministration of glucose. We conclude that beta-phenylpyruvate is able to produce necrotic neural damage accompanied by structurally related neurobehavioral dysfunction. Together with its hypoglycemic effect, these findings may explain the neurodegenerative process that occurs in phenylketonuria (PKU), insofar as beta-phenylpyruvate is a metabolite of phenylalanine known to accumulate in vast amounts in this inherited disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0166-4328(03)00075-5DOI Listing

Publication Analysis

Top Keywords

long-term neurobehavioral
8
blood glucose
8
maze criteria
8
mice
7
beta-phenylpyruvate
5
beta-phenylpyruvate induces
4
induces long-term
4
neurobehavioral damage
4
damage brain
4
brain necrosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!