Quantified EEG analysis monitoring in a novel model of general anaesthesia in rats.

Brain Res Brain Res Protoc

Laboratory of Experimental Neuropsychopharmacology and Neurophysiopathology, Department of Neurological Sciences, University of Pavia, I.R.C.C.S. 'C. Mondino' Institute of Neurology, Via Polestro 3, 27100 Pavia, Italy.

Published: July 2003

The aim of this research was to evaluate the safety and reliability of an anaesthetic mixture (Equitensine: pentobarbital, chloral hydrate, dihydroxypropane, ethanol) which, unlike other 'classic' anaesthetics, such as ketamine [The Electroencephalogram in Anaesthesia, Springer, Berlin, 1984], has been demonstrated not to induce alterations in the extracellular concentrations of cerebral excitatory amino acids. Quantified EEG analysis monitoring and behavioural observation were used to quantify the degree and the time course of the changes in cerebral electrical activity, analgesia and sedation induced, in rats, by the compound under investigation. Equitensine (0.33 ml/100 g), administered intraperitoneally, induced analgesia (monitored by the tail flick method) for 60-70 min and a pattern of behavioural sedation (loss of the righting reflex) lasting, on average, 130-150 min. The EEG monitoring revealed a pattern typical of burst suppression which lasted 15-20 min, followed by another, lasting 270-300 min, characterized by slow waves of high amplitude. The quantified EEG analysis demonstrated that the changes in cerebral electrical activity lasted longer than behavioural observation suggested. The compound under examination was found to be safe, reliable and non-invasive to administer and sustain in all the animals, and quantified EEG analysis proved to be a very sensitive method for highlighting the functional changes in the central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1385-299x(03)00042-4DOI Listing

Publication Analysis

Top Keywords

quantified eeg
16
eeg analysis
16
analysis monitoring
8
behavioural observation
8
changes cerebral
8
cerebral electrical
8
electrical activity
8
quantified
4
analysis
4
monitoring novel
4

Similar Publications

The current paper describes the creation of a simultaneous trimodal neuroimaging protocol. The authors detail their methodological design for a subsequent large-scale study, demonstrate the ability to obtain the expected physiologically induced responses across cerebrovascular domains, and describe the pitfalls experienced when developing this approach. Approach: Electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and transcranial Doppler ultrasound (TCD) were combined to provide an assessment of neuronal activity, microvascular oxygenation, and upstream artery velocity, respectively.

View Article and Find Full Text PDF

Objective: Electroconvulsive therapy (ECT) has been occasionally applied as a treatment for super-refractory status epilepticus (SRSE). However, the effects of ECT on electrographic activity and related clinical outcomes are largely unknown. Here, we use quantitative approaches on electroencephalography (EEG) data to evaluate the neurophysiological influences of ECT and how they may relate to patient survival.

View Article and Find Full Text PDF

Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood.

View Article and Find Full Text PDF

The rate of success of epilepsy surgery, ensuring seizure-freedom, is limited by the lack of epileptogenicity biomarkers. Previous evidence supports the critical role of functional connectivity during seizure generation to characterize the epileptogenic network (EN). However, EN dynamics is highly variable across patients, hindering the development of diagnostic biomarkers.

View Article and Find Full Text PDF

Quantitative electroencephalography predicts postoperative delirium in adult cardiac surgical patients from a prospective observational study.

Sci Rep

December 2024

State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China.

The diagnostic and prognostic value of quantitative electroencephalogram (qEEG) in the the onset of postoperative delirium (POD) remains an area of inquiry. We aim to determine whether qEEG could assist in the diagnosis of early POD in cardiac surgery patients. We prospectively studied a cohort of cardiac surgery patients undergoing qEEG for evaluation of altered mental status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!