CT based 3D treatment planning systems (3DTPS) can be used to design compensating filters that, in addition to missing tissue compensation, can account for tissue inhomogeneities. The use of computer-driven systems provides a practical, convenient, and accurate method of fabricating compensating filters. In this work, we have evaluated a commercially available PAR Scientific DIGIMILL milling machine linked with FOCUS 3DTPS. Compensating filters were fabricated using refined gypsum material with no additives. Thus, filters were of manageable dimensions and were not sensitive to common machining errors. Compensating filters were evaluated using a homogeneous step phantom and step phantoms containing various internal inhomogeneities (air, cork, and bone). The accuracy of two planning algorithms used to design filters was experimentally evaluated. The superposition algorithm was found to produce better agreement with measurements than the Clarkson algorithm. Phantom measurements have demonstrated that compensating filters were able to produce a uniform dose distribution along the compensation plane in the presence of tissue inhomogeneity. However, the dose variation was greatly amplified in planes located beyond the inhomogeneity when a single compensated beam was used. The use of parallel-opposed compensated beams eliminated this problem. Both lateral and depth-dose uniformity was achieved throughout the target volume.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724449 | PMC |
http://dx.doi.org/10.1120/jacmp.v4i3.2517 | DOI Listing |
J Appl Clin Med Phys
January 2025
Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands.
Introduction: This paper describes a method to improve gantry-dependent beam steering for Elekta traveling wave linear accelerators by applying the measured and filtered beam servo corrections to the existing lookup table (LUT). Beam steering has a direct influence on the treatment accuracy by affecting the beam symmetry and position. The presented method provides an improved LUT with respect to the default Elekta method to reduce treatment delivery interruptions.
View Article and Find Full Text PDFThromb Haemost
January 2025
Yale University Center for Outcomes Research and Evaluation, Boston, United States.
No abstract for this Commentary/Viewpoint. Glad to add if the Editorial Office sees necessary.
View Article and Find Full Text PDFEuroIntervention
January 2025
Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Background: The role of direct oral anticoagulants (DOACs) in the treatment of left ventricular thrombus (LVT) after ST-elevation myocardial infarction (STEMI) remains uncertain.
Aims: We aimed to compare the effect of rivaroxaban versus warfarin in patients with STEMI complicated by LVT.
Methods: Adult patients with STEMI and two-dimensional transthoracic echocardiography showing LVT were assigned to rivaroxaban (15 mg once daily) or warfarin (international normalised ratio goal of 2.
Sensors (Basel)
December 2024
School of Geology Engineering and Geomatics, Chang'an University, 126 Yanta Road, Xi'an 710054, China.
To eliminate the noise interference caused by continuous external environmental disturbances on the rotor signals of a maglev gyroscope, this study proposes a noise reduction method that integrates an adaptive particle swarm optimization variational modal decomposition algorithm with a strategy for error compensation of the trend term in reconstructed signals, significantly improving the azimuth measurement accuracy of the gyroscope torque sensor. The optimal parameters for the variational modal decomposition algorithm were determined using the adaptive particle swarm optimization algorithm, allowing for the accurate decomposition of noisy rotor signals. Additionally, using multi-scale permutation entropy as a criterion for discriminant, the signal components were filtered and summed to obtain the denoised reconstructed signal.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.
The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!